

MAID 3.1

Revision 18

August 06, 2012

MAID 3.0 Page i

Contents

1 Authors __ 1

2 Concepts ___ 3
2.1 The Big Picture __ 3
2.2 Abstractions __ 3
2.3 The Life Of An Object __ 4
2.4 Double Vision ___ 4

3 Usage __ 7
3.1 Module Loading ___ 7
3.2 Module Initialization __ 7
3.3 Capability Enumeration __ 7
3.4 Reading Array Capabilities ___ 8
3.5 Using Range Capabilities __ 9
3.6 Capability Groups __ 9
3.7 Using Vendor Specific Capabilities ___ 10
3.8 Opening Sources and Items __ 10
3.9 Opening Data Objects __ 11
3.10 Data Transfer __ 11
3.11 Saving And Restoring State ___ 12
3.12 Event Notification ___ 13
3.13 User Interface Requests ___ 13
3.14 Asynchronous Module Calls ___ 13
3.15 Module Termination ___ 14
3.16 Module Unloading __ 14

4 Enumerations __ 15
4.1 Result Codes ___ 15
4.2 Data Object Types ___ 15
4.3 Data Types __ 16
4.4 Array Types __ 16
4.5 Capability Types __ 17
4.6 Capability Operations __ 17
4.7 Capability Visibility ___ 17
4.8 Object Types ___ 18
4.9 Events __ 18
4.10 User Interface Request Types __ 18
4.11 User Interface Results __ 18
4.12 Filters __ 19
4.13 Commands___ 19
4.14 Capabilities __ 20
4.15 Color Spaces ___ 22
4.16 Boolean Defaults __ 22
4.17 Module Types __ 22
4.18 File Data Types ___ 23
4.19 Flash Modes ___ 23

Contents

Page ii MAID 3.0

5 Structures and Types ___ 25
5.1 Word Value __ 25
5.2 Unsigned Long Value __ 25
5.3 Parameter Value __ 25
5.4 Pointer Value __ 25
5.5 Reference Value __ 25
5.6 MAID Entry Point Function Pointer ___ 25
5.7 MAID Completion Function Pointer __ 25
5.8 MAID Data Delivery Function Pointer ___ 26
5.9 MAID Event Notification Function Pointer ___ 26
5.10 MAID Progress Notification Function Pointer ___ 26
5.11 MAID User Interface Request Function Pointer __ 26
5.12 Callback Definition Structure __ 26
5.13 Date/Time Structure ___ 26
5.14 Point Structure ___ 27
5.15 Size Structure __ 27
5.16 Rectangle Structure __ 27
5.17 String Structure ___ 27
5.18 Array Structure ___ 27
5.19 Range Structure ___ 28
5.20 Capability Information Structure ___ 28
5.21 Object Structure __ 29
5.22 User Interface Request Structure ___ 29
5.23 Generic Data Delivery Structure __ 31
5.24 Image Data Delivery Structure ___ 31
5.25 Sound Data Delivery Structure ___ 32
5.26 Enumeration Structure ___ 32
5.27 File Data Delivery Structure ___ 33

6 Result Codes ___ 35
6.1 kNkMAIDResult_NotSupported ___ 35
6.2 kNkMAIDResult_UnexpectedDataType ___ 35
6.3 kNkMAIDResult_ValueOutOfBounds ___ 35
6.4 kNkMAIDResult_BufferSize __ 35
6.5 kNkMAIDResult_Aborted __ 35
6.6 kNkMAIDResult_NoMedia ___ 35
6.7 kNkMAIDResult_NoEventProc __ 35
6.8 kNkMAIDResult_ZombieObject ___ 35
6.9 kNkMAIDResult_NoError __ 36
6.10 kNkMAIDResult_Pending __ 36
6.11 kNkMAIDResult_OrphanedChildren __ 36
6.12 kNkMAIDResult_NoDataProc ___ 36
6.13 kNkMAIDResult_OutOfMemory ___ 36
6.14 kNkMAIDResult_UnexpectedError ___ 36
6.15 kNkMAIDResult_HardwareError ___ 36
6.16 kNkMAIDResult_MissingComponent ___ 36

7 Events __ 37
7.1 kNkMAIDEvent_AddChild ___ 37
7.2 kNkMAIDEvent_RemoveChild __ 37
7.3 kNkMAIDEvent_WarmingUp ___ 37
7.4 kNkMAIDEvent_WarmedUp __ 37
7.5 kNkMAIDEvent_CapChange __ 37
7.6 kNkMAIDEvent_OrphanedChildren __ 38

 Contents

MAID 3.0 Page iii

7.7 kNkMAIDEvent_CapChangeValueOnly ___ 38

8 Commands __ 39
8.1 kNkMAIDCommand_Async ___ 39
8.2 kNkMAIDCommand_Open ___ 40
8.3 kNkMAIDCommand_Close ___ 40
8.4 kNkMAIDCommand_GetCapCount ___ 40
8.5 kNkMAIDCommand_GetCapInfo __ 41
8.6 kNkMAIDCommand_CapStart ___ 41
8.7 kNkMAIDCommand_CapSet __ 41
8.8 kNkMAIDCommand_CapGet __ 42
8.9 kNkMAIDCommand_CapGetDefault __ 42
8.10 kNkMAIDCommand_CapGetArray ___ 43
8.11 kNkMAIDCommand_Mark ___ 43
8.12 kNkMAIDCommand_AbortToMark __ 44
8.13 kNkMAIDCommand_Abort ___ 44
8.14 kNkMAIDCommand_EnumChildren __ 44
8.15 kNkMAIDCommand_GetParent __ 44
8.16 kNkMAIDCommand_ResetToDefault ___ 45

9 Capabilities ___ 47
9.1 kNkMAIDCapability_AsyncRate ___ 47
9.2 kNkMAIDCapability_ProgressProc ___ 48
9.3 kNkMAIDCapability_EventProc ___ 48
9.4 kNkMAIDCapability_DataProc __ 48
9.5 kNkMAIDCapability_UIRequestProc ___ 48
9.6 kNkMAIDCapability_IsAlive __ 49
9.7 kNkMAIDCapability_Children ___ 49
9.8 kNkMAIDCapability_State __ 49
9.9 kNkMAIDCapability_Name ___ 49
9.10 kNkMAIDCapability_Description __ 49
9.11 kNkMAIDCapability_Interface ___ 50
9.12 kNkMAIDCapability_DataTypes ___ 50
9.13 kNkMAIDCapability_DateTime __ 50
9.14 kNkMAIDCapability_StoredBytes __ 50
9.15 kNkMAIDCapability_Eject ___ 50
9.16 kNkMAIDCapability_Feed __ 51
9.17 kNkMAIDCapability_Capture ___ 51
9.18 kNkMAIDCapability_Mode ___ 51
9.19 kNkMAIDCapability_Acquire ___ 51
9.20 kNkMAIDCapability_Start __ 51
9.21 kNkMAIDCapability_Length __ 52
9.22 kNkMAIDCapability_SampleRate __ 52
9.23 kNkMAIDCapability_Stereo___ 52
9.24 kNkMAIDCapability_Samples ___ 52
9.25 kNkMAIDCapability_Filter ___ 52
9.26 kNkMAIDCapability_Prescan ___ 52
9.27 kNkMAIDCapability_AutoFocus ___ 53
9.28 kNkMAIDCapability_AutoFocusPt ___ 53
9.29 kNkMAIDCapability_Focus ___ 53
9.30 kNkMAIDCapability_Coords __ 53
9.31 kNkMAIDCapability_Resolution ___ 53
9.32 kNkMAIDCapability_Preview ___ 53
9.33 kNkMAIDCapability_Negative __ 54
9.34 kNkMAIDCapability_ColorSpace __ 54

Contents

Page iv MAID 3.0

9.35 kNkMAIDCapability_Bits __ 54
9.36 kNkMAIDCapability_Planar __ 54
9.37 kNkMAIDCapability_Lut ___ 54
9.38 kNkMAIDCapability_Transparency ___ 55
9.39 kNkMAIDCapability_Threshold ___ 55
9.40 kNkMAIDCapability_Pixels ___ 55
9.41 kNkMAIDCapability_ForceScan ___ 55
9.42 kNkMAIDCapability_ForcePrescan ___ 55
9.43 kNkMAIDCapability_ForceAutoFocus __ 56
9.44 kNkMAIDCapability_NegativeDefault __ 56
9.45 kNkMAIDCapability_Firmware __ 56
9.46 kNkMAIDCapability_CommunicationLevel1 ___ 56
9.47 kNkMAIDCapability_CommunicationLevel2 ___ 57
9.48 kNkMAIDCapability_BatteryLevel ___ 57
9.49 kNkMAIDCapability_FreeBytes ___ 57
9.50 kNkMAIDCapability_FreeItems __ 57
9.51 kNkMAIDCapability_Remove ___ 58
9.52 kNkMAIDCapability_FlashMode ___ 58
9.53 kNkMAIDCapability_ModuleType ___ 58
9.54 kNkMAIDCapability_AcquireStreamStart __ 58
9.55 kNkMAIDCapability_AcquireStreamStop __ 58
9.56 kNkMAIDCapability_AcceptDiskAcquisition ___ 59
9.57 kNkMAIDCapability_Version ___ 59
9.58 kNkMAIDCapability_FilmFormat __ 59

10 Function Definitions __ 61
10.1 MAID Entry Point Function ___ 61
10.2 MAID Completion Function ___ 61
10.3 MAID Data Delivery Function ___ 61
10.4 MAID Event Notification Function ___ 61
10.5 MAID Progress Notification Function ___ 62
10.6 MAID User Interface Request Function __ 62

11 History ___ 63
11.1 Changes Since v3.0 Revision 2 ___ 63
11.2 Changes Since v3.0 Revision 3 ___ 63
11.3 Changes Since v3.0 Revision 4 ___ 63
11.4 Changes Since v3.0 Revision 5 ___ 64
11.5 Changes Since v3.0 Revision 6 ___ 64
11.6 Changes Since v3.0 Revision 7 ___ 64
11.7 Changes Since v3.0 Revision 8 ___ 64
11.8 Changes Since v3.0 Revision 9 ___ 65
11.9 Changes Since v3.0 Revision 10 __ 65
11.10 Changes Since v3.0 Revision 11 ___ 65
11.10 Changes Since v3.0 Revision 12 ___ 65
11.11 Changes Since v3.0 Revision 13 ___ 65
11.12 Changes Since v3.1 Revision 1 __ 66
11.13 Changes Since v3.1 Revision 2 __ 66
11.14 Changes Since v3.1 Revision 3 __ 66
11.15 Changes Since v3.1 Revision 4 __ 66
11.16 Changes Since v3.1 Revision 5 __ 66
11.17 Changes Since v3.1 Revision 6 __ 66
11.18 Changes Since v3.1 Revision 7 __ 66
11.19 Changes Since v3.1 Revision 8 __ 66
11.20 Changes Since v3.1 Revision 9 __ 66

 Contents

MAID 3.0 Page v

11.21 Changes Since v3.1 Revision 10 ___ 66
11.22 Changes Since v3.1 Revision 11 ___ 66
11.23 Changes Since v3.1 Revision 12 ___ 67
11.24 Changes Since v3.1 Revision 14 ___ 67
11.25 Changes Since v3.1 Revision 15 ___ 67

MAID 3.0 Page 1

1 Authors

MAID 3.0 Page 3

2 Concepts

This chapter will introduce the ideas behind MAID. Within this chapter, bold type indicates the introduction of terms
that are used throughout this document.

2.1 The Big Picture

The MAID specification was created to provide an interface layer between an application and a device driver for devices
that hold images, sound and/or video. Throughout MAID, the application side is referred to as the client and the device
driver side is referred to as the module. The client provides all of the user interface and the module provides all of the
device communication.

Device Driver

(Module)

Application

(Client)

MAID
User

Device

Figure 1

2.2 Abstractions

MAID abstracts the device communication into layers. At each layer, the client opens a view to the module. That view is
referred to as an object. At the root level is the module object, representing the module itself. Next is the source object,
representing the physical device. Next is the item object representing a collection of the deepest level objects, the data
objects, which represent an image, sound or video. There can be only one of each type of data object within an item.

Throughout this document, “module” is used to refer to the device driver and “module object” is used to refer to the
channel that has been opened to the MAID abstraction of the device driver.

As an example, there are two devices available that are supported by a module. The first device has an image and an
unrelated sound stored within it. The second device has an image with sound and an unrelated video with sound stored
within it. If the client were to open a module object and an object for each of these physical counterparts, the hierarchy of
objects would appear as in Figure 2.

2 Concepts

Page 4 MAID 3.0

Module Object

Source #1

Object

Source #2

Object

Item #1 Object

Item #2 Object

Image #2

Object

Sound #2

Object

Video #1

Object

Sound #3

Object

Image #1

Object

Sound #1

Object

Item #4 Object

Item #3 Object

Figure 2

2.3 The Life Of An Object

An object remains open until the client closes it, which the client must do before unloading the module. When a source,
item or data object is opened, a parent object must be supplied. The object being opened is the child object. All settings,
known as capabilities, are associated with a particular object. The capability settings of the parent object apply to all of
it’s children.

Normally, while an object is open, it is alive. It is no longer alive if the client closes it’s parent or the object’s physical
counterpart disappears. In this zombie state, the client can still read some capabilities for the object. Which capabilities
are still available depends on what information the module can provide without the object’s parent or physical
counterpart.

2.4 Double Vision

Since objects are merely views of physical counterparts, more than one object can be opened for one physical counterpart.
This is true at each level of the MAID object hierarchy. For example, if the client opens a source twice, both source objects
have the same parent module object and access the same physical device as in Figure 3.

Module Object

Source #1

Object A

Source #1

Object B

Physical

Source #1

Figure 3

Each of those source objects has it’s own settings for the physical object. The module will only allow one of the source
objects to have access to the physical source at a time. If the two source objects have a crucial capability set to conflicting
values, only the module can decide how to resolve that predicament in a way that is most satisfactory.

This feature is most useful at the data object level. For image type data, one object can be used for a preview acquire
while another is used for a final acquire. Another example is gang scanning where multiple originals are placed on a

 1 Authors

MAID 3.0 Page 5

scanner. For example, the client can have a full area preview object, three closeup preview objects and three final objects.
Each of these objects will be referring to the same physical image data coming from the same physical scanner.
Obviously if the client started to acquire all seven objects at the same time, the module would scan each one in
succession.

MAID 3.0 Page 7

3 Usage

To simplify the examples shown here, all calls to the module will be made synchronously. Asynchronous operation is
explained below.

3.1 Module Loading

The process of loading a module is system dependent.

About the code how to load module, please refer the function, Load_Module(), Function.cpp, in Sample program.

3.2 Module Initialization

The first step for the client is to have a module structure. It can be either aggregated in a structure or object or allocated
from the heap. It should be noted that this example will only be able to open one module at a time because the module
structure is a single global variable. (Line 1) A real world client will most likely have more than one module open at once.

The client will initialize the structure by setting the refClient member. (Line 9) It will then call the module (Line 12) with
a NULL pointer as the object and a pointer to the module structure as the data. The module is open if the command
completes successfully. (Line 16) While the object is open, the client will not change the value of the refClient member
and the module will not change the value of the refModule member. No two objects can have the same value for
refClient or refModule.

1 NkMAIDObject objModule;

2

3 // open the module synchronously

4 BOOL InitializeMAIDModuleSync(NKREF ref, LPMAIDEntryPointProc pMAIDEntryPoint)

5 {

6 LONG nResult;

7

8 // set the reference

9 objModule.refClient = ref;

10

11 // call the module to open the module

12 nResult = (*pMAIDEntryPoint)(NULL, kNkMAIDCommand_Open, 0, kNkMAIDDataType_ObjectPtr,

13 (NKPARAM)&objModule, NULL, 0);

14

15 // return TRUE if the module successfully opened mimimimi

16 return (nResult == kNkMAIDResult_NoError);

17 }

3.3 Capability Enumeration

Once an object has been opened, the capabilities must be enumerated. The client will call the module to get the number
of capabilities for that object. (Line 10) If that command completes successfully, the client will allocate memory to hold
the capability information. (Line 16) If the memory is allocated successfully, the client will call the module to retrieve the
capability information. (Line 21) If the number of capabilities changed between the two calls to the module (Line 24), the
memory is released (Line 26) and the process repeats. (Line 33) The capabilities are enumerated if the commands
complete successfully. (Line 36)

1 // enumerate the capabilities of an object

2 BOOL EnumerateMAIDObjectCapabilities(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject

pObject,

3 ULONG FAR *pulCapCount, LPNkMAIDCapInfo FAR * ppCapArray)

4 {

5 LONG nResult;

6

3 Usage

Page 8 MAID 3.0

7 do

8 {

9 // call the module to get the size of the capability array

10 nResult = (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_GetCapCount, 0,

11 kNkMAIDDataType_UnsignedPtr, pulCapCount, NULL, 0);

12

13 if (nResult == kNkMAIDResult_NoError)

14 {

15 // allocate memory for the array

16 *ppCapArray = (LPNkMAIDCapInfo)malloc(*pulCapCount * sizeof(NkMAIDCapInfo));

17

18 if (*ppCapArray != NULL)

19 {

20 // call the module to get the capability array

21 nResult = (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_GetCapInfo, *pulCapCount,

22 kNkMAIDDataType_CapInfoPtr, (NKPARAM)*ppCapArray, NULL, 0);

23

24 if (nResult == kNkMAIDResult_BufferSize)

25 {

26 free(*ppCapArray);

27 *ppCapArray = NULL;

28 }

29 }

30 }

31 }

32 // repeat the process if the number of capabilites changed between the two calls to the

module

33 while (nResult == kNkMAIDResult_BufferSize);

34

35 // return TRUE if the capabilities were successfully enumerated

36 return (nResult == kNkMAIDResult_NoError);

37 }

3.4 Reading Array Capabilities

The process of reading array capabilities is similar to reading capability information. The client must check that the
capability is an array type and that it supports the kNkMAIDCommand_CapGetArray and kNkMAIDCommand_CapGet
commands (Line 54). The client will call the module to get information about the array capability. (Line 62) If that
command completes successfully, the client will allocate memory to hold the array data. (Line 68) If the memory is
allocated successfully, the client will call the module to retrieve the array data. (Line 73) If the size of the array data
changed between the two calls to the module (Line 76), the memory is released (Line 78) and the process repeats.
(Line 85) The array has been read if the commands complete successfully. (Line 88)

1 // find the capability

2 BOOL FindMAIDCapability(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject,

3 ULONG ulCapID, LPNkMAIDCapInfo pCapInfo)

4 {

5 LONG nResult;

6 BOOL fRet = FALSE;

7 ULONG ulCapCount;

8 LPNkMAIDCapInfo lpCapArray;

9

10 // make sure we don’t free some memory we didn’t allocate

11 lpCapArray = NULL;

12

13 // this function is in the example for capability enumeration

14 if (EnumerateMAIDObjectCapabilities(pMAIDEntryPoint, pObject, &ulCapCount, &lpCapArray))

15 {

16 // make sure we got an array

17 if (lpCapArray != NULL)

18 {

19 ULONG ulIndex;

20

21 // find the capability

22 for (ulIndex=0; ulIndex<ulCapCount; ++ulIndex)

23 if (lpCapArray[ulIndex].ulID == ulCapID)

24 break;

25

26 // did we find it?

27 if (ulIndex < ulCapCount)

28 {

29 fRet = TRUE;

 3 Usage

MAID 3.0 Page 9

30 *pCapInfo = lpCapArray[ulIndex];

31 }

32 }

33 }

34

35 // make sure to free memory allocated by EnumerateMAIDObjectCapabilities()

36 if (lpCapArray != NULL)

37 free(lpCapArray);

38

39 return fRet;

40 }

41

42 // enumerate the capabilities of an object

43 BOOL ReadMAIDArrayCapability(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject,

44 ULONG ulCapID, LPNkMAIDArray pArray)

45 {

46 LONG nResult;

47 NkMAIDCapInfo capInfo;

48

49 // get the capability information

50 if (!FindMAIDCapability(pMAIDEntryPoint, pObject, ulCapID, &capInfo))

51 return FALSE;

52

53 // the capability must be an array, and must support the CapGetArray and CapGet commands

54 if (capInfo->ulType != kNkMAIDCapType_Array ||

55 !(capInfo-> ulOperations & kNkMAIDCapOperation_GetArray) ||

56 !(capInfo-> ulOperations & kNkMAIDCapOperation_Get))

57 return FALSE;

58

59 do

60 {

61 // call the module to get the size of the array data

62 nResult = (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_CapGet, ulCapID,

63 kNkMAIDDataType_ArrayPtr, (NKPARAM)pArray, NULL, 0);

64

65 if (nResult == kNkMAIDResult_NoError)

66 {

67 // allocate memory for the array

68 pArray->pData = malloc(pArray->ulElements * pArray->wPhysicalBytes);

69

70 if (pArray->pData != NULL)

71 {

72 // call the module to get the array data

73 nResult = (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_CapGetArray, ulCapID,

74 kNkMAIDDataType_ArrayPtr, (NKPARAM)pArray, NULL, 0);

75

76 if (nResult == kNkMAIDResult_BufferSize)

77 {

78 free(pArray->pData);

79 pArray->pData = NULL;

80 }

81 }

82 }

83 }

84 // repeat the process if the array data size changed between the two calls to the module

85 while (nResult == kNkMAIDResult_BufferSize);

86

87 // return TRUE if the array was successfully read

88 return (nResult == kNkMAIDResult_NoError);

89 }

3.5 Using Range Capabilities

3.6 Capability Groups

3 Usage

Page 10 MAID 3.0

3.7 Using Vendor Specific Capabilities

3.8 Opening Sources and Items

To open a source or item object, the client first needs, respectively, a module or source object to use as a parent. The
client will find the parent’s kNkMAIDCapability_Children capability. (Line 9) The client will read this array capability
(Line 14) and choose an ID of a child object. The client will initialize the child object structure by setting the refClient
member. (Line 47) It will then call the module (Line 50) with a pointer to the structure to open the child object. It is open
if the command completes successfully. (Line 55)

For the sake of this example, the capabilities are enumerated and the child ID array is read every time a child is to be
opened. A real-world client would cache both of these to minimize the conversation between the client and the module
and increase speed.

1 // read the child IDs into an array structure

2 BOOL GetMAIDChildIDs(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObjecet pParentObject,

3 LPNkMAIDArray pchildIDArray)

4 {

5 LONG nResult;

6 NkMAIDCapInfo capInfo;

7

8 // this function is in the example for array capabilities

9 if (!FindMAIDCapability(pMAIDEntryPoint, pParentObject, kNkMAIDCapability_Children,

10 &capInfo))

11 return FALSE;

12

13 // this function is in the example for array capabilities

14 if (ReadMAIDArrayCapability(pMAIDEntryPoint, pParentObject, kNkMAIDCapability_Children,

15 pchildIDArray))

16 {

17 // the array must be 32 bit unsigned integers

18 if (pchildIDArray->ulType != kNkMAIDArrayType_Unsigned ||

19 pchildIDArray->wPhysicalSize != 4 || pchildIDArray->wLogicalBits != 32)

20 return FALSE;

21 }

22

23 return TRUE;

24 }

25

26 // open child object

27 BOOL OpenMAIDChild(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pParentObject,

28 ULONG ulChildIndex, NKREF refChild, LPNkMAIDObject pChildObject)

29 {

30 LONG nResult;

31 BOOL fRet = FALSE;

32 NkMAIDArray childIDArray;

33

34 // make sure we don’t free some memory we didn’t allocate

35 childIDArray.pData = NULL;

36

37 // get array of child IDs

38 if (GetMAIDChildIDs(pMAIDEntryPoint, pParentObject, &childIDArray))

39 {

40 // ulChildIndex must be a valid index

41 if (childIDArray.ulElements > ulChildindex && childIDArray.pData != NULL)

42 {

43 // get the ID of the child from the array

44 ULONG FAR *pulChildID = (ULONG FAR *)childIDArray.pData;

45

46 // set the reference

47 pChildObject->refClient = refChild;

48

49 // tell the module to open the child

50 nResult = (*pMAIDEntryPoint)(pParentObject, kNkMAIDCommand_Open,

51 pulChildID[ulChildindex], kNkMAIDDataType_ObjectPtr,

52 (NKPARAM)pChildObject, NULL, 0);

53

54 // return TRUE if the child was successfully opened

 3 Usage

MAID 3.0 Page 11

55 fRet = (nResult == kNkMAIDResult_NoError);

56 }

57 }

58

59 // make sure to free memory allocated by ReadMAIDArrayCapability()

60 if (childIDArray.pData != NULL)

61 free(childIDArray.pData);

62

63 return fRet;

64 }

3.9 Opening Data Objects

To open a data object, the client first needs an item object to use as a parent. The client will get the data types available
from the item (Line 10) and check if the data type it wants is valid (Line 15). The client will initialize the data object
structure by setting the refClient member. (Line 18) The client will then call the module (Line 21) with a pointer to the
data object structure to open the data object. It is open if the command completes successfully. (Line 25)

1 // open data object

2 BOOL OpenMAIDDataObject(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pItemObject,

3 ULONG ulDataObjectType, NKREF refChild, LPNkMAIDObject pDataObject)

4 {

5 LONG nResult;

6 BOOL fRet = FALSE;

7 ULONG ulDataTypes;

8

9 // get the data types available for this item

10 nResult = (*pMAIDEntryPoint)(pItemObject, kNkMAIDCommand_CapGet,

11 kNkMAIDCapability_DataTypes, kNkMAIDDataType_ UnsignedPtr,

12 (NKPARAM)(ULONG FAR *)&ulDataTypes, NULL, 0);

13

14 // make sure we got an answer and that the data type requested is available

15 if (nResult == kNkMAIDResult_NoError && (ulDataTypes & ulDataObjectType) != 0)

16 {

17 // set the reference

18 pDataObject->refClient = refChild;

19

20 // tell the module to open the data object

21 nResult = (*pMAIDEntryPoint)(pItemObject, kNkMAIDCommand_Open,

22 ulDataObjectType, kNkMAIDDataType_ObjectPtr, (NKPARAM)pDataObject, NULL, 0);

23

24 // return TRUE if the child was successfully opened

25 fRet = (nResult == kNkMAIDResult_NoError);

26 }

27

28 return fRet;

29 }

3.10 Data Transfer

This is how you do it.

1 // acquire a data object

2 BOOL AcquireMAIDDataObject(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pDataObject,

3 LPVOID FAR *ppData)

4 {

5 LONG nResult;

6 BOOL fRet = FALSE;

7 ULONG ulDataSize;

8 NkMAIDCallback cbDataProc;

9

10 // find out how large the data will be – this is different for images, sound and video

11 :

12 :

13

14 if (nResult == kNkMAIDResult_NoError)

15 {

16 // allocate the memory we need

17 *ppData = malloc(ulDataSize);

18

19 if (*ppData != NULL)

20 {

3 Usage

Page 12 MAID 3.0

21 // make sure the data deliviery callback function gets a pointer to the memory

22 cbDataProc.pProc = (LPNKFUNC)ReceiveMAIDData;

23 cbDataProc.ref = (NKREF)*ppData;

24

25 // set the data delivery callback function

26 nResult = (*pMAIDEntryPoint)(pDataObject, kNkMAIDCommand_CapSet,

27 kNkMAIDCapability_ProgressProc, kNkMAIDDataType_CallbackPtr,

28 (NKPARAM)(LPNkMAIOCallback)&cbDataProc, NULL, 0);

29

30 if (nResult == kNkMAIDResult_NoError)

31 {

32 // start the acquire

33 nResult = (*pMAIDEntryPoint)(pDataObject, kNkMAIDCommand_CapStart,

34 kNkMAIDCapability_Acquire, kNkMAIDDataType_Null, NULL, NULL, 0);

35

36 // return TRUE if the acquire was successfully completed

37 fRet = (nResult == kNkMAIDResult_NoError);

38 }

39 }

40 }

41

42 return fRet;

43 }

44

45 // copy the delivered data

46 LONG ReceiveMAIDData(LPNkMAIDObject pObject, NKREF ref, LPVOID pDataInfo, LPVOID pData)

47 {

48 LPVOID pBuffer = (LPVOID)ref; // reference value in callback structure

49

50 // interpret the structure pointed to by pDataInfo and copy the

51 // data in pData to a client allocated buffer

52 :

53 :

54

55 return kNkMAIDResult_NoError;

56 }

3.11 Saving And Restoring State

Each module, source, item and data object can each have their own state.

To get the current state of an object, the client only needs to read the kNkMAIDCapability_State array capability. The data
that is retrieved from that capability should be stored verbatim. To restore the state of an object, the client only needs to
set the kNkMAIDCapability_State array capability with data that was previously read from the object.

1 // get the object state

2 BOOL GetMAIDObjectState(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject,

3 LPNkMAIDArray pStateArray)

4 {

5 LONG nResult;

6 NkMAIDCapInfo capInfo;

7

8 // this function is in the example for array capabilities

9 if (!FindMAIDCapability(pMAIDEntryPoint, pParentObject, kNkMAIDCapability_State,

10 &capInfo))

11 return FALSE;

12

13 // this function is in the example for array capabilities

14 if (ReadMAIDArrayCapability(pMAIDEntryPoint, pParentObject, kNkMAIDCapability_State,

15 pStateArray))

16 {

17 // the array must be 32 bit unsigned integers

18 if (pStateArray->ulType != kNkMAIDArrayType_Unsigned ||

19 pStateArray->wPhysicalSize != 1 || pStateArray->wLogicalBits != 8)

20 return FALSE;

21 }

22

23 return TRUE;

24 }

25

26 // Set the object state

27 BOOL SetMAIDObjectState(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject,

28 LPNkMAIDArray pStateArray)

29 {

 3 Usage

MAID 3.0 Page 13

30 LONG nResult;

31 NkMAIDCapInfo capInfo;

32

33 // this function is in the example for array capabilities

34 if (!FindMAIDCapability(pMAIDEntryPoint, pParentObject, kNkMAIDCapability_State,

35 &capInfo))

36 return FALSE;

37

38 // set the state

39 nResult = (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_CapSet,

40 kNkMAIDCapability_State, kNkMAIDDataType_ArrayPtr,

41 (NKPARAM)pStateArray, NULL, 0);

42

43 return (nResult == kNkMAIDResult_NoError);

44 }

3.12 Event Notification

3.13 User Interface Requests

3.14 Asynchronous Module Calls

For the sake of the example, we will be closing an object. The client will call the module with a pointer to a completion
function. (Line 39) If the module can execute the command asynchronously, the module will return the
kNkMAIDResult_Pending result code immediately. In this example, the client waits for the close command to complete
by continuously calling the module with the kNkMAIDCommand_Async command. The client can direct this command
to a certain object to give it priority (Line 20) or let the module decide what to do. (Line 26) The client will check the
result code (Line 10) which will be set by the completion callback function. (Line 50) If the module processes the
command synchronously, the module will call the completion function before returning and the wait loop (Lines 10-27)
will never be executed. The object is closed if the command completes successfully. (Line 31)

1 BOOL CloseMAIDObject(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject)

2 {

3 LONG nResult;

4

5 // call the module asynchronously

6 if (CallMAIDAsync(pMAIDEntryPoint, pObject, kNkMAIDCommand_Close, 0, kNkMAIDDataType_NULL, 0,

7 &nResult))

8 {

9 // loop while processing the command

10 while (nResult == kNkMAIDResult_Pending)

11 {

12 // respond to user interface items or perform other non-MAID operations

13 // ...

14

15 // give a single threaded module a chance to call the callback – the client can

16 // direct the async command at an object or let the module choose what object

17 // it should be directed to

18

19 // direct the module to process asynchronous commands only for this object

20 (*pMAIDEntryPoint)(pObject, kNkMAIDCommand_Async, 0, kNkMAIDDataType_Null, 0,

21 NULL, 0);

22

23 // .. OR ..

24

25 // let the module process asynchronous commands for any object

26 (*pMAIDEntryPoint)(NULL, kNkMAIDCommand_Async, 0, kNkMAIDDataType_Null, 0, NULL, 0);

27 }

28 }

29

30 // return TRUE if the object was closed

31 return (nResult == kNkMAIDResult_NoError);

32 }

33

3 Usage

Page 14 MAID 3.0

34 // call the module asynchronously

35 BOOL CallMAIDAsync(LPMAIDEntryPointProc pMAIDEntryPoint, LPNkMAIDObject pObject, ULONG

ulCommand,

36 ULONG ulParam, ULONG ulDataType, NKPARAM data, LONG FAR *pnResult)

37 {

38 // call the module

39 *pnResult = (*pMAIDEntryPoint)(pObject, ulCommand, ulParam, ulDataType, data,

40 SetMAIDResult, (NKREF)pnResult);

41

42 // return TRUE if the command was started

43 return (nResult == kNkMAIDResult_NoError || nResult == kNkMAIDResult_Pending);

44 }

45

46 // save the result of the command in the reference

47 void SetMAIDResult(LPMAIDObject pObject, ULONG ulCommand, ULONG ulParam, ULONG ulDataType,

48 NKPARAM data, NKREF refComplete, LONG nResult)

49 {

50 *((LONG FAR *)refComplete) = nResult;

51 }

3.15 Module Termination

To terminate a module, the client will close all objects. When closing each object, the module will abort any commands in
progress, call the progress callback with ulDone equal to ulTotal if the callback is present, call the completion function
and set the refModule member of the NkMAIDObject structure to NULL so the object cannot be used by the client by
mistake.

3.16 Module Unloading

The process of unloading a module is system dependent.

About the code how to unload module, please refer the process, Unload Module, main.cpp, in Sample program.

MAID 3.0 Page 15

4 Enumerations

4.1 Result Codes

enum eNkMAIDResult

{

 // these values are errors

 kNkMAIDResult_NotSupported = -127,

 kNkMAIDResult_UnexpectedDataType,

 kNkMAIDResult_ValueOutOfBounds,

 kNkMAIDResult_BufferSize,

 kNkMAIDResult_Aborted,

 kNkMAIDResult_NoMedia,

 kNkMAIDResult_NoEventProc,

 kNkMAIDResult_NoDataProc,

 kNkMAIDResult_ZombieObject,

 kNkMAIDResult_OutOfMemory

 kNkMAIDResult_UnexpectedError,

 kNkMAIDResult_HardwareError,

 kNkMAIDResult_MissingComponent,

 kNkMAIDResult_NoError = 0,

 // these values are warnings

 kNkMAIDResult_Pending,

 kNkMAIDResult_OrphanedChildren,

 kNkMAIDResult_VendorBase = +127

};

The module will deliver one of these values to the nResult parameter of the client’s completion callback function and
return the same value from the entry point. Errors will have negative values.

4.2 Data Object Types

enum eNkMAIDDataObjType

{

 kNkMAIDDataObjType_Image = 0x00000001,

 kNkMAIDDataObjType_Sound = 0x00000002,

 kNkMAIDDataObjType_Video = 0x00000004,

 kNkMAIDDataObjType_Thumbnail = 0x00000008,

 kNkMAIDDataObjType_File = 0x00000010

};

The module will use one or more of these values to indicate what types of data a module or source can produce and
what types of data are available for a specific item. See the description of kNkMAIDCapability_DataTypes for more
information.

4 Enumerations

Page 16 MAID 3.0

4.3 Data Types

enum eNkMAIDDataType

{

 kNkMAIDDataType_Null = 0,

 kNkMAIDDataType_Boolean, // passed by value, set only

 kNkMAIDDataType_Integer, // signed 32 bit int, passed by value, set only

 kNkMAIDDataType_Unsigned, // unsigned 32 bit int, passed by value, set only

 kNkMAIDDataType_BooleanPtr, // pointer to single byte boolean value(s)

 kNkMAIDDataType_IntegerPtr, // pointer to signed 4 byte value(s)

 kNkMAIDDataType_UnsignedPtr, // pointer to unsigned 4 byte value(s)

 kNkMAIDDataType_FloatPtr, // pointer to DOUB_P value(s)

 kNkMAIDDataType_PointPtr, // pointer to NkMAIDPoint structure(s)

 kNkMAIDDataType_SizePtr, // pointer to NkMAIDSize structure(s)

 kNkMAIDDataType_RectPtr, // pointer to NkMAIDRect structure(s)

 kNkMAIDDataType_StringPtr, // pointer to NkMAIDString structure(s)

 kNkMAIDDataType_DateTimePtr, // pointer to NkMAIDDateTime structure(s)

 kNkMAIDDataType_CallbackPtr, // pointer to NkMAIDCallback structure(s)

 kNkMAIDDataType_RangePtr, // pointer to NkMAIDRange structure(s)

 kNkMAIDDataType_ArrayPtr, // pointer to NkMAIDArray structure(s)

 kNkMAIDDataType_EnumPtr, // pointer to NkMAIDEnum structure(s)

 kNkMAIDDataType_ObjectPtr, // pointer to NkMAIDObject structure(s)

 kNkMAIDDataType_CapInfoPtr, // pointer to NkMAIDCapInfo structure(s)

 kNkMAIDDataType_GenericPtr // pointer to some value

};

The client will pass one of these values to the ulDataType parameter of the entry point to indicate how the data
parameter will be interpreted by the module.

4.4 Array Types

enum eNkMAIDArrayType

{

 kNkMAIDArrayType_Boolean = 0, // 1 byte per element

 kNkMAIDArrayType_Integer, // signed value that is 1, 2 or 4 bytes per element

 kNkMAIDArrayType_Unsigned, // unsigned value that is 1, 2 or 4 bytes per element

 kNkMAIDArrayType_Float, // DOUB_P elements

 kNkMAIDArrayType_Point, // NkMAIDPoint structures

 kNkMAIDArrayType_Size, // NkMAIDSize structures

 kNkMAIDArrauType_Rect, // NkMAIDRect structures

 kNkMAIDArrayType_PackedString, // packed array of strings

 kNkMAIDArrayType_String, // NkMAIDString structures

 kNkMAIDArrayType_DateTime // NkMAIDDateTime structures

};

The module will set one of these values in the ulType member of the NkMAIDArray structure to indicate how the data
of the array should be interpreted. See the description of the NkMAIDArray structure for more information.

 4 Enumerations

MAID 3.0 Page 17

4.5 Capability Types

enum eNkMAIDCapType

{

 kNkMAIDCapType_Process = 0, // a process that can be started

 kNkMAIDCapType_Boolean, // single byte boolean value

 kNkMAIDCapType_Integer, // signed 4 byte value

 kNkMAIDCapType_Unsigned, // unsigned 4 byte value

 kNkMAIDCapType_Float, // DOUB_P value

 kNkMAIDCapType_Point, // NkMAIDPoint structure

 kNkMAIDCapType_Size, // NkMAIDSize structure

 kNkMAIDCapType_Rect, // NkMAIDRect structure

 kNkMAIDCapType_String, // NkMAIDString structure

 kNkMAIDCapType_DateTime, // NkMAIDDateTime structure

 kNkMAIDCapType_Callback, // NkMAIDCallback structure

 kNkMAIDCapType_Array, // NkMAIDArray structure

 kNkMAIDCapType_Enum, // NkMAIDEnum structure

 kNkMAIDCapType_Range, // NkMAIDRange structure

 kNkMAIDCapType_Generic, // generic pointer

 kNkMAIDCapType_BoolDefault // NkMAIDBooleanDefault structure

};

The module will set one of these values in the ulType member of the NkMAIDCapInfo structure to indicate what type
of information is represented. See the Capabilities chapter and the description of the NkMAIDCapInfo structure for
more information.

4.6 Capability Operations

enum eNkMAIDCapOperations

{

 kNkMAIDCapOperation_Start = 0x0001,

 kNkMAIDCapOperation_Get = 0x0002,

 kNkMAIDCapOperation_Set = 0x0004,

 kNkMAIDCapOperation_GetArray, = 0x0008,

 kNkMAIDCapOperation_GetDefault = 0x0010

};

The module will set one of more of these values in the ulOperations member of the NkMAIDCapInfo structure to
indicate what operations are permitted on a particular capability. See the Capabilities chapter and the description of the
NkMAIDCapInfo structure for more information.

4.7 Capability Visibility

enum eNkMAIDCapVisibility

{

 kNkMAIDCapVisibility_Hidden = 0x0001,

 kNkMAIDCapVisibility_Advanced = 0x0002,

 kNkMAIDCapVisibility_Vendor = 0x0004,

 kNkMAIDCapVisibility_Group = 0x0008,

 kNkMAIDCapVisibility_GroupMember = 0x0010,

 kNkMAIDCapVisibility_Invalid = 0x0020

};

The module will set one or more of these values in the ulVisibility member of the NkMAIDCapInfo structure to
indicate what level of visibility a particular capability has. See the Capabilities chapter and the description of the
NkMAIDCapInfo structure for more information.

4 Enumerations

Page 18 MAID 3.0

4.8 Object Types

enum eNkMAIDObjectType

{

 kNkMAIDObjectType_Module = 1,

 kNkMAIDObjectType_Source,

 kNkMAIDObjectType_Item,

 kNkMAIDObjectType_DataObj

};

The module will set one of these values in the ulType member of the NkMAIDObject structure to indicate what type of
object is represented.

4.9 Events

enum eNkMAIDEvent

{

 kNkMAIDEvent_AddChild,

 kNkMAIDEvent_RemoveChild,

 kNkMAIDEvent_WarmingUp,

 kNkMAIDEvent_WarmedUp,

 kNkMAIDEvent_CapChange,

 kNkMAIDEvent_OrphanedChildren,

 kNkMAIDEvent_CapChangeValueOnly

};

The module will deliver one of these values to the ulEvent parameter of the client’s event callback function to indicate
what event has occurred.

4.10 User Interface Request Types

enum eNkMAIDUIRequestType

{

 kNkMAIDUIRequestType_Ok,

 kNkMAIDUIRequestType_OkCancel,

 kNkMAIDUIRequestType_YesNo,

 kNkMAIDUIRequestType_YesNoCancel,

};

When the module calls the client’s user interface callback function, the ulType member of the NkMAIDUIRequestInfo
structure will be set to one of these values. The user will be presented with the choices specified by the value.

4.11 User Interface Results

enum eNkMAIDUIRequestResult

{

 kNkMAIDUIRequestResult_None,

 kNkMAIDUIRequestResult_Ok,

 kNkMAIDUIRequestResult_Cancel,

 kNkMAIDUIRequestResult_Yes,

 kNkMAIDUIRequestResult_No

};

When the module calls the client’s user interface callback function, the ulDefault member of the
NkMAIDUIRequestInfo structure will be set to one of these values. The value will indicate which button should be
highlighted by default. The client’s user interface callback function will return one of these values depending on which
button the user presses. The kNkMAIDEventResult_None value can only be returned if the fSync member of the
NkMAIDUIRequestInfo structure is FALSE.

 4 Enumerations

MAID 3.0 Page 19

4.12 Filters

enum eNkMAIDFilter

{

 kNkMAIDFilter_White,

 kNkMAIDFilter_Infrared,

 kNkMAIDFilter_Red,

 kNkMAIDFilter_Green,

 kNkMAIDFilter_Blue,

 kNkMAIDFilter_Ultraviolet

};

The module will use one or more of these values in the kNkMAIDCapability_Filter capability. See the Capabilities
chapter for more information.

4.13 Commands

enum eNkMAIDCommand

{

 kNkMAIDCommand_Async, // process asynchronous operations

 kNkMAIDCommand_Open, // opens a child object

 kNkMAIDCommand_Close, // closes a previously opened object

 kNkMAIDCommand_GetCapCount, // get number of capabilities of an object

 kNkMAIDCommand_GetCapInfo, // get capabilities of an object

 kNkMAIDCommand_CapStart, // starts capability

 kNkMAIDCommand_CapSet, // set value of capability

 kNkMAIDCommand_CapGet, // get value of capability

 kNkMAIDCommand_CapGetDefault, // get default value of capability

 kNkMAIDCommand_CapGetArray // get data for array capability

 kNkMAIDCommand_Mark, // insert mark in the command queue

 kNkMAIDCommand_AbortToMark, // abort asynchronous commands to mark

 kNkMAIDCommand_Abort, // abort current asynchronous command

 kNkMAIDCommand_EnumChildren, // requests ‘add’ events for all child IDs

 kNkMAIDCommand_GetParent, // gets previously opened parent for object

 kNkMAIDCommand_ResetToDefault // resets all capabilities to their default value

};

The client will pass one of these values to the ulCommand parameter of the MAID entry point to indicate what
operation the module should perform. These commands are explained in detail in the Commands chapter.

4 Enumerations

Page 20 MAID 3.0

4.14 Capabilities

 4 Enumerations

MAID 3.0 Page 21

enum eNkMAIDCapability

{

 kNkMAIDCapability_AsyncRate = 1, // milliseconds between idle async calls

 kNkMAIDCapability_ProgressProc, // callback during lengthy operation

 kNkMAIDCapability_EventProc, // callback when event occurs

 kNkMAIDCapability_DataProc, // callback to deliver data

 kNkMAIDCapability_UIRequestProc, // callback to show user interface

 kNkMAIDCapability_IsAlive, // FALSE if object is removed or parent closed

 kNkMAIDCapability_Children, // IDs of children objects

 kNkMAIDCapability_State, // current state of the object

 kNkMAIDCapability_Name, // a string representing the name of the object

 kNkMAIDCapability_Description, // a string describing the object

 kNkMAIDCapability_Interface, // a string describing the interface to a device

 kNkMAIDCapability_DataTypes, // what data types are supported or available

 kNkMAIDCapability_DateTime, // date associated with an object

 kNkMAIDCapability_StoredBytes, // read only size of object as stored on device

 kNkMAIDCapability_Eject, // ejects media from a device

 kNkMAIDCapability_Feed, // feeds media into a device

 kNkMAIDCapability_Capture, // captures new item from the source

 kNkMAIDCapability_MediaPresent, // TRUE if item has physical media to acquire

 kNkMAIDCapability_Mode, // mode of this object

 kNkMAIDCapability_Acquire, // begins the acquisition of the object

 kNkMAIDCapability_ForceScan, // If FALSE, unneccesary scans can be eliminated

 kNkMAIDCapability_Start, // start offset (in seconds) of the object

 kNkMAIDCapability_Length, // length (in seconds) of the object

 kNkMAIDCapability_SampleRate, // sampling rate (in samples/sec) of the object

 kNkMAIDCapability_Stereo, // mono or stereo

 kNkMAIDCapability_Samples, // given current state, read only number of samples

 kNkMAIDCapability_Filter, // selects the filter for the light source

 kNkMAIDCapability_Prescan, // performs a prescan

 kNkMAIDCapability_ForcePrescan, // If FALSE, unneccesary prescans can be eliminated

 kNkMAIDCapability_AutoFocus, // sets the focus automatically

 kNkMAIDCapability_ForceAutoFocus, // If FALSE, unneccesary autofocus can be eliminated

 kNkMAIDCapability_AutoFocusPt, // sets the position to focus upon

 kNkMAIDCapability_Focus, // sets the focus

 kNkMAIDCapability_Coords, // rectangle of object in device units

 kNkMAIDCapability_Resolution, // resolution of object (in pixels/inch)

 kNkMAIDCapability_Preview, // preview or final acquire

 kNkMAIDCapability_Negative, // negative or positive original

 kNkMAIDCapability_ColorSpace, // colorspace for image delivery

 kNkMAIDCapability_Bits, // bits per color

 kNkMAIDCapability_Planar, // interleaved or planar data transfer

 kNkMAIDCapability_Lut, // LUT(s) for object

 kNkMAIDCapability_Transparency, // light path of the original

 kNkMAIDCapability_Threshold, // threshold level for lineart images

 kNkMAIDCapability_Pixels, // given current state, read only size of image

 kNkMAIDCapability_NegativeDefault,// Default value for Negative capability

 kNkMAIDCapability_Firmware, // Firmware version number

 kNkMAIDCapability_CommunicationLevel1, // Communication method

 kNkMAIDCapability_CommunicationLevel2, // Communication method

 kNkMAIDCapability_BatteryLevel, // Battery Level in device

 kNkMAIDCapability_FreeBytes, // Free bytes in device

 kNkMAIDCapability_FreeItems, // Free items in device

 kNkMAIDCapability_Remove, // Delete an object

 kNkMAIDCapability_FlashMode, // Flash mode

 kNkMAIDCapability_ModuleType, // Module type

 kNkMAIDCapability_AcquireStreamStart, // Start a stream acquisition

 kNkMAIDCapability_AcquireStreamStop, // Stop a stream acquisition

 kNkMAIDCapability_AcceptDiskAcquisition,// Allow acquisitions to use disk transfer

 kNkMAIDCapability_Version, // MAID version

4 Enumerations

Page 22 MAID 3.0

 kNkMAIDCapability_FilmFormat, // Film format (35mm, 6*6 etc)

 kNkMAIDCapability_TotalBytes, // Total bytes in device storage

 kNkMAIDCapability_VendorBase = 0x8000 // vendor supplied capabilities start here

};

The module will use these values in the ulID member of NkMAIDCapInfo structures to indicate what capabilities it
provides to the client. The client will pass one of these values to the ulParam parameter of the MAID entry point to
indicate what capability to perform the command upon.

The module writer can define capabilities unique to their device. The client will allow the user to interact with those
capabilities in a generic manner.

These capabilities are explained in detail in the Capabilities chapter.

4.15 Color Spaces

enum eNkMAIDColorSpace

{

 kNkMAIDColorSpace_LineArt,

 kNkMAIDColorSpace_Grey,

 kNkMAIDColorSpace_RGB,

 kNkMAIDColorSpace_sRGB,

 kNkMAIDColorSpace_CMYK,

 kNkMAIDColorSpace_Lab,

 kNkMAIDColorSpace_LCH,

 kNkMAIDColorSpace_AppleRGB,

 kNkMAIDColorSpace_ColorMatchRGB,

 kNkMAIDColorSpace_NTSCRGB,

 kNkMAIDColorSpace_BruceRGB,

 kNkMAIDColorSpace_AdobeRGB,

 kNkMAIDColorSpace_CIERGB,

 kNkMAIDColorSpace_AdobeWideRGB,

 kNkMAIDColorSpace_AppleRGB_Compensated

};

The client will use these values in the kNkMAIDCapability_ColorSpace capability. See the Capabilities chapter for more
information.

4.16 Boolean Defaults

enum eNkMAIDBooleanDefault

{

 kNkMAIDBooleanDefault_True,

 kNkMAIDBooleanDefault_False

};

The client will use these values with the kNkMAIDCapability_NegativeDefault capability. See the Capabilities chapter
for more information.

4.17 Module Types

enum eNkMAIDModuleTypes

{

 kNkMAIDModuleType_Scanner = 0x0001,

 kNkMAIDModuleType_Camera = 0x0002

};

The module will return one of more of these values in the kNkCapability_ModuleType capability. This will help the client
determine if this module should be used, or perhaps which user interface to display.

 4 Enumerations

MAID 3.0 Page 23

4.18 File Data Types

enum eNkMAIDFileDataTypes

{

 kNkMAIDFileDataType_NotSpecified,

 kNkMAIDFileDataType_JPEG,

 kNkMAIDFileDataType_TIFF,

 kNkMAIDFileDataType_FlashPix,

 kNkMAIDFileDataType_NIF,

 kNkMAIDFileDataType_QuickTime,

 kNkMAIDFileDataType_UserType = 0x100

};

The module will use these values in the NkMAIDFileInfo structure when sending file data to the client in response to the
kNkMAIDCapability_Acquire capability.

4.19 Flash Modes

enum eNkMAIDFlashMode

{

 kNkMAIDFlashMode_FrontCurtain,

 kNkMAIDFlashMode_RearCurtain,

 kNkMAIDFlashMode_SlowSync,

 kNkMAIDFlashMode_RedEyeReduction,

 kNkMAIDFlashMode_SlowSyncRedEyeReduction,

 kNkMAIDFlashMode_SlowSyncRearCurtain

};

The client will use these values in the kNkMAIDCapability_FlashMode capability. See the Capabilities chapter for more
information.

MAID 3.0 Page 25

5 Structures and Types

5.1 Word Value

typdef unsigned short WORD;

This definition may be implementation dependent with the only requirement that it must be appropriate for 16 bit
unsigned integers.

5.2 Unsigned Long Value

typdef unsigned long ULONG;

This definition may be implementation dependent with the only requirement that it must be appropriate for 32 bit
unsigned integers.

5.3 Parameter Value

typdef ULONG NKPARAM;

This definition may be implementation dependent with the only requirement that it must be appropriate for pointers to
objects and 32 bit integers.

5.4 Pointer Value

typdef void FAR *LPVOID;

This definition may be implementation dependent with the only requirement that it must be appropriate for pointers to
objects.

5.5 Reference Value

typedef LPVOID NKREF;

This definition may be implementation dependent with the only requirement that it must be appropriate for pointers to
objects. This type will be used in structures where the client wishes to associate the structure with another structure or
object. This is also used by callback functions.

5.6 MAID Entry Point Function Pointer

typedef LONG (FAR *LPMAIDEntryPointProc)(LPNkMAIDObject, ULONG, ULONG, ULONG, NKPARAM,

LPMAIDCompletionProc, NKREF);

5.7 MAID Completion Function Pointer

typedef void (FAR *LPMAIDCompletionProc)(LPNkMAIDObject, ULONG, ULONG, ULONG, NKPARAM, NKREF,

LONG);

5 Structures and Types

Page 26 MAID 3.0

5.8 MAID Data Delivery Function Pointer

typedef LONG (FAR *LPMAIDDataProc)(NKREF, LPVOID, LPVOID);

5.9 MAID Event Notification Function Pointer

typedef void (FAR *LPMAIDEventProc)(NKREF, ULONG, NKPARAM);

5.10 MAID Progress Notification Function Pointer

typedef void (FAR *LPMAIDProgressProc)(ULONG, ULONG, NKREF, ULONG, ULONG);

5.11 MAID User Interface Request Function Pointer

typedef ULONG (FAR *LPMAIDUIRequestProc)(NKREF, LPNkMAIDUIRequestInfo);

5.12 Callback Definition Structure

typedef struct tagNkMAIDCallback

{

 LPNKFUNC pProc;

 NKREF refProc;

} NkMAIDCallback, FAR* LPNkMAIDCallback;

This structure is used to describe a callback function. The pProc member points to the function and the refProc member
is used by the callback for it’s own purposes. Usually, refProc is used by the client to point to an object or structure.

5.13 Date/Time Structure

typedef struct tagNkMAIDDateTime

{

 WORD nYear; // ie 1997, 1998

 WORD nMonth; // 1-12 = Jan-Dec

 WORD nDay; // 1-31

 WORD nHour; // 0-23

 WORD nMinute; // 0-59

 WORD nSecond; // 0-59

 ULONG nSubsecond; // Module dependent

} NkMAIDDateTime, FAR* LPNkMAIDDateTime;

Each individual module can decide how to interpret the nSubsecond member. For example, if several pictures were
taken within one second, they could be assigned sequential numbers starting with zero. Alternatively, it could be
implemented as milliseconds.

 5 Structures and Types

MAID 3.0 Page 27

5.14 Point Structure

typedef struct tagNkMAIDPoint

{

 LONG x;

 LONG y;

} NkMAIDPoint, FAR* LPNkMAIDPoint;

5.15 Size Structure

typedef struct tagNkMAIDSize

{

 LONG w;

 LONG h;

} NkMAIDSize, FAR* LPNkMAIDSize;

5.16 Rectangle Structure

typedef struct tagNkMAIDRect

{

 LONG x; // left coordinate

 LONG y; // top coordinate

 ULONG w; // width

 ULONG h; // height

} NkMAIDRect, FAR* LPNkMAIDRect;

5.17 String Structure

typedef struct tagNkMAIDString

{

 SCHAR str[256]; // allows a 255 character null terminated string

} NkMAIDString, FAR* LPNkMAIDString;

The string must be null terminated. Using this structure, the maximum length string that can be transferred is 255
characters long. Consider using the NkMAIDArray structure with the ulType member set to
kNkMAIDArrayType_PackedString for longer strings.

5.18 Array Structure

typedef struct tagNkMAIDArray

{

 ULONG ulType; // one of eNkMAIDArrayType

 ULONG ulElements; // total number of elements

 ULONG ulDimSize1; // size of first dimension

 ULONG ulDimSize2; // size of second dimension, zero for 1 dim

 ULONG ulDimSize3; // size of third dimension, zero for 1 or 2 dim

 WORD wPhysicalBytes; // bytes per element

 WORD wLogicalBits; // must be <= wPhysicalBytes * 8

 LPVOID pData; // allocated by the client

} NkMAIDArray, FAR* LPNkMAIDArray;

The NkMAIDArray structure allows an array to be transferred through the MAID interface. The client will always
allocate the memory. It is the responsibility of the receiver of the data to interpret the data properly. The size of pData in
bytes should always be ulElements times wPhysicalBytes.

Two and three dimensional arrays may be transferred by setting ulDimSize1, ulDimSize2 and ulDimSize3. For a two
dimensional array of 20 rows of 10 elements each, ulDimSize1 will be 10, ulDimSize2 will be 20 and ulElements will be
200. If there are five of those arrays, ulDimSize1 will be 10, ulDimSize2 will be 20, ulDimSize3 will be 5 and
ulElements will be 1000.

5 Structures and Types

Page 28 MAID 3.0

When ulType is kNkMAIDArrayType_Integer or kNkMAIDArrayType_Unsigned, the sender may specify that although the
integer values in pData are two bytes each (wPhysicalBytes), the receiver should interpret them as 10-bit values
(wLogicalBits). The wLogicalBits member is ignored for other types.

When ulType is kNkMAIDArrayType_PackedString, pData will point to a packed list of null terminated strings,
ulElements will be the total length in bytes of the data including the terminating null bytes, ulDimSize1 will be the
number of strings, ulDimSize2 will be zero and wPhysicalBytes will be one.

5.19 Range Structure

typedef struct tagNkMAIDRange

{

 DOUB_P lfValue;

 DOUB_P lfDefault;

 ULONG ulValueIndex; // zero-based index

 ULONG ulDefaultIndex; // zero-based index

 DOUB_P lfLower;

 DOUB_P lfUpper;

 ULONG ulSteps; // zero for infinite range, otherwise must be >= 2

} NkMAIDRange, FAR* LPNkMAIDRange;

This structure is to implement capabilities with a numerical range of values (0-100, -5.0 to +5.0, etc.) The lower and
upper limits will be in lfLower and lfUpper respectively.

If any value from lfLower to lfUpper is allowed, lfValue will be the current value, lfDefault will be the default value
and ulSteps will be zero. In this case, ulValueIndex and ulDefaultIndex are not used.

If only discrete steps are allowed, ulValueIndex will be the index of the current step, ulDefaultIndex will be the index
of the default step and ulSteps will be the number of equally spaced steps including the lower and upper limits. There
must be at least two discrete steps. In this case, lfValue and lfDefault are not used.

There are two ways to set the value of a range. The client can send a pointer to a NkMAIDRange structure with a new
value in lfValue or ulValueIndex. For ranges with discrete steps, the client can send an unsigned integer which the
module will accept as the index of the value. In that case, zero is the lower limit and one less than ulSteps is the upper
limit.

5.20 Capability Information Structure

typedef struct tagNkMAIDCapInfo

{

 ULONG ulID; // one of eNkMAIDCapability or vendor specified

 ULONG ulType; // one of eNkMAIDCababilityType

 ULONG ulVisibility; // eNkCapVisibility bits

 ULONG ulOperations; // eNkCapOperations bits

 SCHAR szDescription[256]; // text describing the capability

} NkMAIDCapInfo, FAR* LPNkMAIDCapInfo;

Each of the module, source, item, image and sound objects have their own capabilities. Use the
kNkMAIDCommand_GetCapInfo to retrieve an array of these structures. Each has a unique identifier value in ulID. The
ID can be one of the eNkMAIDCapability values or a vendor specific value.

 5 Structures and Types

MAID 3.0 Page 29

5.21 Object Structure

typedef struct tagNkMAIDObject

{

 ULONG ulType; // one of eNkMAIDObjectType

 ULONG ulID;

 NKREF refClient;

 NKREF refModule;

} NkMAIDObject, FAR* LPNkMAIDObject;

This structure is able to represent the module, source, item, image and sound objects that pass between the MAID client
and module.

To open an object, the client will allocate the memory required and fill refClient with whatever value it needs. The client
then calls the module to open the object. During that call, the module will set ulType to the appropriate value, ulID to
the ID of the object and refModule to whatever value it needs. While the object is open, the values of refClient and
refModule will not change.

If a module, source, item, image or sound is opened a second time, the module will maintain a second set of capability
values for the new object. Both NkMAIDObject structures will have the same ulID value. The module will be able to
differentiate the first and second instances by the value of the refModule member. The client will be able to differentiate
the two by the value of the refClient member.

5.22 User Interface Request Structure

typedef struct tagNkMAIDUIRequestInfo

{

 ULONG ulType; // one of eNkMAIDUIRequestType

 ULONG ulDefault; // default value – one of eNkMAIDUIRequestResult

 BOOL fSync; // TRUE if user must respond before returning

 char FAR * lpPrompt; // NULL terminated text to show to user

 char FAR * lpDetail; // NULL terminated text indicating more detail

 LPNkMAIDObject pObject; // Target Object for data element

 NKPARAM data; // Pointer to an NkMAIDArray structure

} NkMAIDUIRequestInfo, FAR* LPNkMAIDUIRequestInfo;

When the module wants to notify the user of some event or query a response from the user, it will call the client’s user
interface function with pUIRequest set to a pointer to this structure. The ulType member indicates what buttons to
make available to the user. The ulDefault member indicates which button will initially be highlighted. If the fSync
member is TRUE, the client must immediately display the dialog and wait for the user’s response. If it is FALSE, the
client can either return the kNkMAIDEventResult_None value and display the dialog at some later time or wait for the
user’s response.

The lpPrompt member will point to a null terminated string provided by the module. The pointer will be valid for the
length of the user interface callback. The client must make a copy of the string in order to show the user interface
asynchronously.

If more detailed information is available, the lpDetail member will point to a null terminated string provided by the
module. The pointer will be valid for the length of the user interface callback. The client must make a copy of the string
in order to show the user interface asynchronously. If more detailed information is not available, the lpDetail member
should be set to NULL.

If the UI request is a simple message with no capabilities, the pObject and data members should be set to NULL. If
capabilities are to be presented to the user, the data member will point to an NkMAIDArray structure allocated by the
module. The array structure will contain one or more MAID capability identifiers (listed in eNkMAIDCapability). All
of these capabilities must refer to the MAID object specified in pObject. The client will attempt to display these
capabilities to the user. The array structure should be filled as follows:

1 ulType = kNkMAIDArrayType_Unsigned

2 ulElements = <number of capabilities to be displayed>

3 ulDimSize1 = <same as ulElements>

4 ulDimSize2 = 0

5 Structures and Types

Page 30 MAID 3.0

5 ulDimSize3 = 0

6 wPhysicalBytes = 4

7 wLogicalBits = 32

8 pData = <array of capability IDs allocated by the module>

 5 Structures and Types

MAID 3.0 Page 31

The following table lists the likely client implementation for each type of UI Request:

Capability Type Likely UI

Process Button

Boolean Check Box

Integer, Unsigned, Float, String Edit Control

Point, Size, Rect Custom UI

DateTime Edit Controls or Custom UI

Callback Undefined

Array Radio Button Group

Range Slider or Spin Control

5.23 Generic Data Delivery Structure

typedef struct tagNkMAIDDataInfo

{

 ULONG ulType; // one of eNkMAIDDataObjType

} NkMAIDDataInfo, FAR* LPNkMAIDDataInfo;

This structure is used in the NkMAIDImageInfo, NkMAIDSoundInfo, and NkMAIDFileInfo structures to indicate what
type of data is being delivered to the client’s data delivery callback function. If kNkMAIDDataObjType_File is
combined with other value to make up the ulType member, it means that the accompanying data is formatted as a file
and that the NkMAIDFileInfo structure should be used.

5.24 Image Data Delivery Structure

typedef struct tagNkMAIDImageInfo

{

 NkMAIDDataInfo base;

 NkMAIDSize szTotalPixels; // total size of image to be transfered

 ULONG ulColorSpace; // One of eNkMAIDColorSpace

 NKMAIDRect rData; // coords of data, (0,0) = top left

 ULONG ulRowBytes; // number of bytes per row of pixels

 WORD wBits[4]; // number of bits per plane per pixel

 WORD wPlane; // see below for description

 BOOL fRemoveObject; // TRUE if the object should be removed

} NkMAIDImageInfo, FAR* LPNkMAIDImageInfo;

The module sets the pDataInfo parameter of the client’s data delivery callback function to a pointer to this structure to
describe the image data being delivered. The ulColorSpace and wBits members apply to the image as a whole. If only
one plane of a color image is being transferred, ulColorSpace will be the color space of the entire image all of the
elements of wBits will be set.

If the data is being delivered in kNkMAIDColorSpace_LineArt or kNkMAIDColorSpace_Grey, the wPlane parameter
will be ignored. If the data is being delivered in one of the color formats and is being delivered one plane at a time, the
wPlane parameter will indicate the plane being delivered. For RGB and sRGB: R=1, G=2, B=3. For CMYK: C=1, M=2,
Y=3, K=4. For Lab: L=1, A=2, B=3. For LCH: L=1, C=2, H=3. If the data is being delivered in one of the color formats
and is being delivered in "chunky" format, the wPlane parameter will be 0.

Chunky color data will always be delivered interleaved, in the order specified by ulColorSpace (RGB, CMYK, LAB, or
LCH order), LSB aligned and byte aligned. This means that 10 bit per color data will occupy two bytes per color per
pixel and the valid bits will be in the lower 10 bits of each two byte pair. The byte order is specific to the system. For the
Windows environment and the Macintosh with Intel CPU, the low byte will be first.

5 Structures and Types

Page 32 MAID 3.0

The module can request that the data object be removed after the client is finished receiving the data by setting the
fRemoveObject flag to TRUE. The client is not required to act on this request. If data is being delivered in more than
one section, this flag should only be set to TRUE during the delivery of the final section of the data, or some data may be
lost. The client may remove the data object by using the kNkMAIDCapability_Remove capability. If the current object
is the only data object in the item object, the module may delete that item object. In this case, the module should send a
kNkMAIDEvent_RemoveChild event to the source object.

5.25 Sound Data Delivery Structure

typedef struct tagNkMAIDSoundInfo

{

 NkMAIDDataInfo base;

 ULONG ulTotalSamples; // number of full samples to be transferred

 BOOL fStereo; // TRUE if stereo, FALSE if mono

 ULONG ulStart; // index of starting sample of data

 ULONG ulLength; // number of samples of data

 WORD wBits; // number of bits per channel

 WORD wChannel; // 0 = mono or L+R; 1,2 = left, right

 BOOL fRemoveObject; // TRUE if the object should be removed

} NkMAIDSoundInfo, FAR* LPNkMAIDSoundInfo;

The module sets the pDataInfo parameter of the client’s data delivery callback function to a pointer to this structure to
describe the sound data being delivered. The fStereo member applies to the sound as a whole. If only one channel of a
stereo sound is being transferred, it will be TRUE.

Stereo data will always be delivered interleaved, in LR order, LSB aligned and byte aligned. This means that 10 bit per
channel data will occupy two bytes per channel per sample and the valid bits will be in the lower 10 bits of each two
byte pair. The byte order is specific to the system. For the Windows environment and the Macintosh with Intel CPU, the
low byte will be first.

The module can request that the data object be removed after the client is finished receiving the data by setting the
fRemoveObject flag to TRUE. The client is not required to act on this request. If data is being delivered in more than
one section, this flag should only be set to TRUE during the delivery of the final section of the data, or some data may be
lost. The client may remove the data object by using the kNkMAIDCapability_Remove capability. If the current object
is the only data object in the item object, the module may delete that item object. In this case, the module should send a
kNkMAIDEvent_RemoveChild event to the source object.

5.26 Enumeration Structure

typedef struct tagNkMAIDEnum

{

 ULONG ulType; // one of eNkMAIDArrayType

 ULONG ulElements; // total number of elements

 ULONG ulValue; // current index (zero-based)

 ULONG ulDefault; // default index (zero-based)

 WORD wPhysicalBytes; // bytes per element

 LPVOID pData; // allocated by the client

} NkMAIDEnum, FAR* LPNkMAIDEnum;

The NkMAIDEnum structure allows an enumeration to be transferred through the MAID interface. The client will
always allocate the memory. It is the responsibility of the receiver of the data to interpret the data properly. The size of
pData in bytes should always be ulElements times wPhysicalBytes.

This structure is used to implement a capability that is a choice of options. The current index will be in ulValue and the
default index will be in ulDefault. If ulType is kNkMAIDArrayType_String or kNkMAIDArrayType_PackedString, the
strings are the text representations to be presented to the user.

The value of a choice capability can be set in two ways. The client can send a pointer to an NkMAIDEnum structure
with a new index in ulValue or it can send an unsigned integer which will be interpreted as the index.

 5 Structures and Types

MAID 3.0 Page 33

When ulType is kNkMAIDArrayType_PackedString, pData will point to a packed list of null terminated strings,
ulElements will be the total length in bytes of the data including the terminating null bytes and wPhysicalBytes will be
one.

5.27 File Data Delivery Structure

typedef struct tagNkMAIDFileInfo

{

 NkMAIDDataInfo base;

 ULONG ulFileDataType; // One of eNkMAIDFileDataTypes

 ULONG ulTotalLength; // total number of bytes to be transferred

 ULONG ulStart; // index of starting byte (0-based)

 ULONG ulLength; // number of bytes in this delivery

 BOOL fDiskFile; // TRUE if the file is delivered on disk

 BOOL fRemoveObject; // TRUE if the object should be removed

} NkMAIDFileInfo, FAR* LPNkMAIDFileInfo;

The module sets the pDataInfo parameter in the client’s data delivery callback function to a pointer to this structure to
describe the data being delivered. The ulFileDataType and ulTotalLength members apply to the file data as a whole (the
type and size of the actual file). The ulStart member will contain the offset in the file of the data being delivered. The
ulLength member will contain the length of the data being delivered. If the data is delivered in more than one call, the
pieces should be delivered in order from beginning to end.

If the file being delivered is on disk, the fDiskFile member should be set to TRUE and the pData member of the client's
data delivery callback will be set to a pointer to an NkMAIDString structure. This structure will contain the full path
and name of the disk file. When delivering a file on disk, the ulStart member should be set to 0; the ulLength and
ulTotalLength members should be set to the total length of the file, if it is known by the module. If the length of the file is
not known by the module, these members may be set to 0. The module may not deliver data in a disk file unless the
client has set the delivery location with the kNkMAIDCapability_AcceptDiskAcquisition capability first.

The module can request that the data object be removed after the client is finished receiving the data by setting the
fRemoveObject flag to TRUE. The client is not required to act on this request. If data is being delivered in more than
one section, this flag should only be set to TRUE during the delivery of the final section of the data, or some data may be
lost. The client may remove the data object by using the kNkMAIDCapability_Remove capability. If the current object
is the only data object in the item object, the module may delete that item object. In this case, the module should send a
kNkMAIDEvent_RemoveChild event to the source object.

MAID 3.0 Page 35

6 Result Codes

One of these values will be returned from the entry point function and sent to the completion callback function.

6.1 kNkMAIDResult_NotSupported

The module will return this value if the client attempted to perform an operation on a capability that does not exist for
the specified object or if the client attempted to perform an operation that is not supported for the capability.

6.2 kNkMAIDResult_UnexpectedDataType

The module will return this value if the client sent the ulDataType parameter to the entry point function to a type that is
incorrect for the command and/or capability.

6.3 kNkMAIDResult_ValueOutOfBounds

The module will return this value if the client attempts to set a capability to a value outside the allowed range for that
capability.

6.4 kNkMAIDResult_BufferSize

The module will return this value in only two cases. When the client sends a kNkMAIDCommand_GetCapInfo command
and the count does not match the number of capabilities. When the client sends a kNkMAIDCommand_CapGet for an
array capability and the size specified in the array structure does not match the size of the data for that capability.

6.5 kNkMAIDResult_Aborted

The module will return this value for an asynchronous command if the client sends the kNkMAIDCommand_Abort,
kNkMAIDCommand_AbortToMark or kNkMAIDCommand_Close command for the asynchronous command’s object

6.6 kNkMAIDResult_NoMedia

The module will return this value if the client attempts to start an acquisition, autofocus, eject or some other process
capability that requires some media in the device.

6.7 kNkMAIDResult_NoEventProc

The module will return this value if the client sends the kNkMAIDCommand_EnumChildren command without first
setting the kNkMAIDCapability_EventProc capability to a value other than NULL.

6.8 kNkMAIDResult_ZombieObject

The module will return this value if the client attempts to send a command that cannot be completed because the object
is no longer alive.

6 Result Codes

Page 36 MAID 3.0

6.9 kNkMAIDResult_NoError

The module will return this value if the command completed successfully.

6.10 kNkMAIDResult_Pending

The module will return this value if the client specified a completion callback function for a command and the module
wants to return control to the client before the command is complete.

6.11 kNkMAIDResult_OrphanedChildren

The module will return this value if the client closes an object while the client still has children of that object open.

6.12 kNkMAIDResult_NoDataProc

The module will return this value if the client starts an acquisition with kNkMAIDCapability_Acquire and has not
specified a DataProc for the object.

6.13 kNkMAIDResult_OutOfMemory

The module will return this value if some operation cannot be completed because of a low-memory condition.

6.14 kNkMAIDResult_UnexpectedError

The module will return this value if some operation cannot be completed because of an unexpected error.

6.15 kNkMAIDResult_HardwareError

The module will return this value if some operation cannot be completed because of a hardware error.

6.16 kNkMAIDResult_MissingComponent

The module will return this value if some operation cannot be completed because of a failure to find, open, or access a
required file.

MAID 3.0 Page 37

7 Events

Events are optional for the client, but not for the module. All of the conditions that the client would be notified of
through the event callback function can be deduced by polling various elements.

7.1 kNkMAIDEvent_AddChild

The client can deduce this event by polling the kNkMAIDCapability_Children capability.

The module will send this event to the parent module, source or item object when it detects the addition of a new child
source, item or data type object, respectively. If the event is sent to a module or source, the data parameter will be the ID
of the new child. If the event is sent to an item, the data parameter will be one of eNkMAIDDataType.

The client can send the kNkMAIDCommand_EnumChildren command to request that the module enumerate all of the
children of an object. The module will send a kNkMAIDEvent_AddChild to the object for each of the children. If there is
no event callback function, the module will return the kNkMAIDResult_NoEventProc for the command.

7.2 kNkMAIDEvent_RemoveChild

The client can deduce this event by polling the kNkMAIDCapability_Children capability.

The module will send this event to the parent module, source or item object when it detects the removal of a child source,
item or data type object, respectively. If the event is sent to a module or source, the data parameter will be the ID of the
new child. If the event is sent to an item, the data parameter will be one of eNkMAIDDataType.

Before sending this event to the parent object, the module will first abort any asynchronous commands currently being
processed for the child object and then set the child object’s kNkMAIDCapability_IsAlive capability to FALSE.

7.3 kNkMAIDEvent_WarmingUp

The client can deduce this event by examining the kNkMAIDCapability_WarmedUp capability.

The module will send this event to a source object when the device enters a state where it cannot guarantee the best
quality, for instance, when a light source is first turned on.

7.4 kNkMAIDEvent_WarmedUp

The client can deduce this event by examining the kNkMAIDCapability_WarmedUp capability.

The module will send this event to a source object when the device leaves a state where it cannot guarantee the best
quality, for instance, when a light source is first turned on.

7.5 kNkMAIDEvent_CapChange

The client can deduce this event by examining the value and number of capabilities.

The module will send this event to the module, source, item, or data object when the number of capabilities or the values
of any of the existing capabilities has changed. Normally, if the client sets the value of a single capability by using the
kNkMAIDCommand_CapSet command, this event is not required. However, if capabilities other than the one specified
by the client are affected by the kNkMAIDCommand_CapSet command, this event should be sent.

6 Result Codes

Page 38 MAID 3.0

If this event is sent to indicate a single capability change, the data parameter will be the ID of the capability which has
changed. If this event is sent to indicate multiple capability changes or a change to the number of capabilities available,
the data parameter will be NULL. If the values of several capabilities have changed, the module has the option of
sending one CapChange event for each capability, or a single CapChange event with NULL data.

7.6 kNkMAIDEvent_OrphanedChildren

The client can deduce this event by examining the kNkMAIDCapability_IsAlive capability of the children objects.

The module will send this event to notify an object that is being closed that it has children objects that are still open.

7.7 kNkMAIDEvent_CapChangeValueOnly

The client can deduce this event by examining the value and number of capabilities.

The module will send this event to the module, source, item, or data object when the current value of a capabiliy has
changed. This event implies that characteristics other than the current value have not changed (e.g. number of array
elements, enumeration data, visibility, available operations, etc.). If any other characteristics have changed, the
kNkMAIDEvent_CapChange event should be sent instead. Normally, if the client sets the value of a single capability by
using the kNkMAIDCommand_CapSet command, this event is not required. However, if capabilities other than the one
specified by the client are affected by the kNkMAIDCommand_CapSet command, this event should be sent.

If this event is sent to indicate a single capability change, the data parameter will be the ID of the capability which has
changed. If this event is sent to indicate changes to a number of capabilities, the data parameter will be NULL. If the
values of several capabilities have changed, the module has the option of sending one CapChangeValueOnly event for
each capability, or a single CapChangeValueOnly event with NULL data.

MAID 3.0 Page 39

8 Commands

For each of the commands documented here, there is an explanation of what the parameters to the MAID entry point
will be.

Any command may take a significant amount of time to process. It is at the module’s discretion as to whether to
complete the command synchronously during one call to the module or return immediately and process the command
asynchronously in another thread or during kNkMAIDCommand_Async commands. When the command is complete, the
completion function supplied with the command will be called whether it was processed synchronously or
asynchronously. The client can require that the command be processed synchronously by not specifying a completion
function pointer. Asynchronous commands that are issued while the client is processing a callback (e.g. completion
callback or event notification callback) may or may not be completed (at the module's discretion) until the client exits
that callback.

The client may send several related asynchronous commands without waiting for previous ones to complete. The last
one of the series will be the kNkMAIDCommand_Mark command. If one of the queued commands fails, the client can
send the kNkMAIDCommand_AbortToMark command to abort the other commands up to and including the
kNkMAIDCommand_Mark command. The module will call the completion function for each command with the nResult
parameter set to kNkMAIDResult_Aborted.

An issue arises when the module processes some commands synchronously and others asynchronously. If a
synchronous command is preceded by a command that is being processed asynchronously, the module must determine
whether it is safe to process the new command immediately or not. If the module decides to delay processing the new
command, the module must then decide whether to wait until after the previous command is complete and then process
the new command synchronously or queue the new command to be processed asynchronously after the previous
command.

For array and enumeration capabilities, two commands must be sent to get the data. To know how much memory to
allocate, the client must first send the kNkMAIDCommand_CapGet command. The module will set all the members of the
NkMAIDArray or NkMAIDEnum structure. Once the client allocates the memory and sets the pData member of the
NkMAIDArray or NkMAIDEnum structure, that structure will be sent for the kNkMAIDCommand_CapGetArray
command. If the size of the data changes between these two calls, the module will not store any data in the pData
member and return kNkMAIDResult_BufferSize. The client should start the process over by sending another
kNkMAIDCommand_CapGet command.

8.1 kNkMAIDCommand_Async

This command will process asynchronous commands for the specified object in a single threaded module.

pObject May be NULL or refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

Multithreaded or synchronous modules can simply return kNkMAIDResult_NoError for this command.

If the module has the kNkMAIDCapability_AsyncRate capability, the client will send this command at the specified rate
during idle periods.

The module will return kNkMAIDResult_Pending to indicate that it is processing commands and it wishes to receive this
command as soon as possible and not at the rate specified by the kNkMAIDCapability_AsyncRate capability

8 Commands

Page 40 MAID 3.0

8.2 kNkMAIDCommand_Open

This command will open a child of the specified object.

pObject May be NULL or refer to a module, source or item
ulParam May be NULL, the ID of the source or item or the type of the data object to be opened
ulDataType Must be kNkMAIDDataType_ObjectPtr
data Must be a pointer to a NkMAIDObject structure

This command will be the first command sent to a module after it is loaded. When the pObject parameter is NULL, the
object opened will be a module object and the module will initialize itself if it has not already. When the pObject
parameter refers to a module, source or item, the object opened will be a source, item or data object, respectively.

The client will set the refClient member of the NkMAIDObject structure passed in the data parameter before calling the
module. The module will allocate any internal structures to maintain a state and store a pointer, handle, ID or other
identifier in the refModule member of the NkMAIDObject structure. The module will set all of the NkMAIDObject
structure members except refClient. While the object is open, the client will not change the value of the refClient
member and the module will not change the value of the refModule member. No two objects can have the same value
for refClient or refModule.

This command may be used more than once by the same client to open the same module, source, item or data object.
The module will maintain a separate internal structure and state for each invocation.

If the command completes successfully, the client must close the object before releasing the module.

8.3 kNkMAIDCommand_Close

This command will close the connection to the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

The module will abort any commands that are processing asynchronously for the object. The module will set the
refModule member of the NkMAIDObject structure to NULL. The client may not use the structure again without
reopening the object.

If the client has not closed all of the child objects of the object it is closing, the module will send the
kNkMAIDEvent_OrphanedChildren event. If there is no event callback function or the event callback function does not
close all of the child objects, the module will return kNkMAIDResult_OrphanedChildren.

8.4 kNkMAIDCommand_GetCapCount

This command will get the number of capabilities available for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Must be kNkMAIDDataType_UnsignedPtr
data Must be a pointer to a 32 bit unsigned integer.

 8 Commands

MAID 3.0 Page 41

8.5 kNkMAIDCommand_GetCapInfo

This command will get information about all of the capabilities available for the specified module, source, item or data
object.

pObject May refer to a module, source, item or data object
ulParam The number of NkMAIDCapInfo structures that can be stored
ulDataType Must be kNkMAIDDataType_CapInfoPtr
data Must be a pointer to an array of NkMAIDCapInfo structures

The size of the array must coincide with the ulParam parameter. The module will return kNkMAIDResult_BufferSize if it
does not.

8.6 kNkMAIDCommand_CapStart

This command will start the specified capability for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam The ID of the capability to be started
ulDataType Ignored
data Ignored

Within the capability’s NkMAIDCapInfo structure, the ulType member must be kNkMAIDCapType_Process and the
ulOperations member must be have the kNkMAIDCapOperation_Start bit set. If the capability does not support this
command, the module will return kNkMAIDResult_NotSupported.

8.7 kNkMAIDCommand_CapSet

This command will set the value of the specified capability for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam The ID of the capability to be set
ulDataType One of eNkMAIDDataType
data Value or pointer

Within the capability’s NkMAIDCapInfo structure, the ulOperations member must be have the
kNkMAIDCapOperation_Set bit set. The values that are permitted for ulDataType depends on the ulType member of the
capability’s NkMAIDCapInfo structure according to this table:

ulType value ulDataType value
kNkMAIDCapType_Boolean kNkMAIDDataType_Boolean, kNkMAIDDataType_BooleanPtr
kNkMAIDCapType_Integer kNkMAIDDataType_Integer, kNkMAIDDataType_IntegerPtr
kNkMAIDCapType_Unsigned kNkMAIDDataType_Unsigned, kNkMAIDDataType_UnsignedPtr
kNkMAIDCapType_Float kNkMAIDDataType_FloatPtr
kNkMAIDCapType_Point kNkMAIDDataType_PointPtr
kNkMAIDCapType_Size kNkMAIDDataType_SizePtr
kNkMAIDCapType_Rect kNkMAIDDataType_RectPtr
kNkMAIDCapType_String kNkMAIDDataType_StringPtr
kNkMAIDCapType_DateTime kNkMAIDDataType_DateTimePtr
kNkMAIDCapType_Callback kNkMAIDDataType_CallbackPtr, kNkMAIDDataType_Null
kNkMAIDCapType_Array kNkMAIDDataType_ArrayPtr
kNkMAIDCapType_Enum kNkMAIDDataType_EnumPtr, kNkMAIDDataType_Unsigned
kNkMAIDCapType_Range kNkMAIDDataType_RangePtr, kNkMAIDDataType_Unsigned
kNkMAIDCapType_Generic kNkMAIDDataType_GenericPtrRangePtr

This command is not permitted for the kNkMAIDCapType_Process type.

8 Commands

Page 42 MAID 3.0

If the data type does not match this table, the module will return kNkMAIDResult_UnexpectedDataType. If the capability
does not support this command, the module will return kNkMAIDResult_NotSupported.

8.8 kNkMAIDCommand_CapGet

This command will get the value of the specified capability for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam The ID of the capability to be retrieved
ulDataType One of eNkMAIDDataType
data Pointer

Within the capability’s NkMAIDCapInfo structure, the ulOperations member must be have the
kNkMAIDCapOperation_Get bit set. The values that are permitted for ulDataType depends on the ulType member of the
capability’s NkMAIDCapInfo structure according to this table:

ulType value ulDataType value
kNkMAIDCapType_Boolean kNkMAIDDataType_BooleanPtr
kNkMAIDCapType_Integer kNkMAIDDataType_IntegerPtr
kNkMAIDCapType_Unsigned kNkMAIDDataType_UnsignedPtr
kNkMAIDCapType_Float kNkMAIDDataType_FloatPtr
kNkMAIDCapType_Point kNkMAIDDataType_PointPtr
kNkMAIDCapType_Size kNkMAIDDataType_SizePtr
kNkMAIDCapType_Rect kNkMAIDDataType_RectPtr
kNkMAIDCapType_String kNkMAIDDataType_StringPtr
kNkMAIDCapType_DateTime kNkMAIDDataType_DateTimePtr
kNkMAIDCapType_Callback kNkMAIDDataType_CallbackPtr
kNkMAIDCapType_Array kNkMAIDDataType_ArrayPtr
kNkMAIDCapType_Enum kNkMAIDDataType_EnumPtr
kNkMAIDCapType_Range kNkMAIDDataType_RangePtr
kNkMAIDCapType_Generic kNkMAIDDataType_GenericPtr

This command is not permitted for the kNkMAIDCapType_Process type.

If the data type does not match this table, the module will return kNkMAIDResult_UnexpectedDataType. If the capability
does not support this command, the module will return kNkMAIDResult_NotSupported.

8.9 kNkMAIDCommand_CapGetDefault

This command will get the default value of the specified capability for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam The ID of the capability to be retrieved
ulDataType One of eNkMAIDDataType
data Pointer

Within the capability’s NkMAIDCapInfo structure, the ulOperations member must be have the
kNkMAIDCapOperation_GetDefault bit set. The values that are permitted for ulDataType depends on the ulType
member of the capability’s NkMAIDCapInfo structure according to this table:

 8 Commands

MAID 3.0 Page 43

ulType value ulDataType value
kNkMAIDCapType_Boolean kNkMAIDDataType_BooleanPtr
kNkMAIDCapType_Integer kNkMAIDDataType_IntegerPtr
kNkMAIDCapType_Unsigned kNkMAIDDataType_UnsignedPtr
kNkMAIDCapType_Float kNkMAIDDataType_FloatPtr
kNkMAIDCapType_Point kNkMAIDDataType_PointPtr
kNkMAIDCapType_Size kNkMAIDDataType_SizePtr
kNkMAIDCapType_Rect kNkMAIDDataType_RectPtr
kNkMAIDCapType_Generic kNkMAIDDataType_GenericPtr

This command is not permitted for the kNkMAIDCapType_Process, kNkMAIDCapType_String,
kNkMAIDCapType_DateTime, kNkMAIDCapType_Callback, kNkMAIDCapType_Array, kNkMAIDCapType_Enum, and
kNkMAIDCapType_Range types.

If the data type does not match this table, the module will return kNkMAIDResult_UnexpectedDataType. If the capability
does not support this command, the module will return kNkMAIDResult_NotSupported.

8.10 kNkMAIDCommand_CapGetArray

This command will get the data associated with the specified array capability for the specified module, source, item or
data object.

pObject May refer to a module, source, item or data object
ulParam The ID of the array capability for which to get data
ulDataType Must be kNkMAIDDataType_ArrayPtr, kNkMAIDDataType_EnumPtr
data Must be a pointer to an NkMAIDArray or NkMAIDEnum structure

Within the capability’s NkMAIDCapInfo structure, the ulType member must be kNkMAIDCapType_Array or
kNkMAIDCapType_Enum and the ulOperations member must be have the kNkMAIDCapOperation_GetArray bit set. All
of the members of the NkMAIDArray or NkMAIDEnum structure will not be changed, the module will only store data
at the address pointed to by the pData member. If the capability does not support this command, the module will return
kNkMAIDResult_NotSupported. The module will return kNkMAIDResult_BufferSize if the members of the NkMAIDArray
or NkMAIDEnum structure do not match what the module wants to store.

8.11 kNkMAIDCommand_Mark

This command will insert a mark in the queue for the specified module, source, item or data object.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

This command is to better support asynchronous command processing by the module. The module does not need to
perform any operations, but this command must not complete until all of the asynchronous commands before it for the
specified object are complete. A completion function might not be supplied for this command.

8 Commands

Page 44 MAID 3.0

8.12 kNkMAIDCommand_AbortToMark

This command will abort asynchronous commands in the queue for the specified module, source, item or data object up
to and including the next kNkMAIDCommand_Mark command.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

This command is to better support asynchronous command processing by the module.

The client may send several related asynchronous commands without waiting for previous ones to complete. The last
one of the series will be the kNkMAIDCommand_Mark command. If one of the queued commands fails, the client can
send the kNkMAIDCommand_AbortToMark command to abort the other commands up to and including the
kNkMAIDCommand_Mark command. The module will call the completion function for each command with the nResult
parameter set to kNkMAIDResult_Aborted.

If there is no kNkMAIDCommand_Mark command, all asynchronous commands will be aborted.

Only commands sent to the specified object will be aborted.

8.13 kNkMAIDCommand_Abort

This command will abort the asynchronous command currently being processed.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

This command is to better support asynchronous command processing by the module. The module will call the
completion function for the command with kNkMAIDResult_Aborted.

Only commands sent to the specified object will be aborted.

8.14 kNkMAIDCommand_EnumChildren

The module will send kNkMAIDEvent_AddChild events to the object for all of it’s children.

pObject May refer to a module, source or item
ulParam Ignored
ulDataType Ignored
data Ignored

If the client did not set the kNkMAIDCapability_EventProc capability to a value other than NULL before sending this
command, the module will return kNkMAIDResult_NoEventProc.

8.15 kNkMAIDCommand_GetParent

The module will get information about an object’s parent.

pObject May refer to a source, item or data object
ulParam Ignored
ulDataType Must be kNkMAIDDataType_ObjectPtr
data Must be a pointer to a NkMAIDObject structure

The module will set the members of the NkMAIDObject structure to match the values of the object’s parent’s
NkMAIDObject structure. The client may use the structure in subsequent calls to the module. It is, however, the
responsibility of the client to make sure any persistent data it has for the parent object remains valid.

 8 Commands

MAID 3.0 Page 45

8.16 kNkMAIDCommand_ResetToDefault

The module will reset the selected object to its default values.

pObject May refer to a module, source, item or data object
ulParam Ignored
ulDataType Ignored
data Ignored

The module will reset all capabilities of the selected object to their default values. If the selected object has open children
or data objects, those objects should also have their capabilities reset to their default values.

MAID 3.0 Page 47

9 Capabilities

For each of the capabilities documented here, there is an explanation of what the members of the NkMAIDCapInfo
structure will be.

Most of the capabilities listed here will be handled explicitly by the client. The remaining listed capabilities and the
vendor supplied capabilities will be handled in a generic manner. The client will use the ulVisibility and szDescription
members to describe them to the user.

The module has the ability to specify that a set of capabilities should be treated as a group. For each capability that is to
be included in a group, the ulVisibility member must contain the kNkMAIDCapVisibility_GroupMember value. In order
to group those capabilities, a new "group" capability must be created. The ulVisibility member must contain the
kNkMAIDCapVisibility_Group value. This new capability will be a kNkMAIDCapType_Array type capability, which will
contain an array of ID's of other capabilities. When the client reads this capability with the kNkMAIDCommand_CapGet
command, the module will fill the NkMAIDArray structure as follows:

1 ulType = kNkMAIDArrayType_Unsigned

2 ulElements = <number of member-capabilities in this group>

3 ulDimSize1 = <same as ulElements>

4 ulDimSize2 = 0

5 ulDimSize3 = 0

6 wPhysicalBytes = 4

7 wLogicalBits = 32

8 pData = NULL

After allocating enough memory to hold the data, the client will call the module with the
kNkMAIDCommand_CapGetArray command. Upon return, the pData member should contain an array of ULONG
values, each one of which is the ID of another capability.

9.1 kNkMAIDCapability_AsyncRate

The module uses this capability to suggest the frequency that the client should send kNkMAIDCommand_Async
commands during idle periods. It is expressed as the number of milliseconds (1/1000 s) between
kNkMAIDCommand_Async commands.

Object types Module only
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

This capability should not be provided if a module does not require periodic kNkMAIDCommand_Async commands, as
may be the case with a multithreaded module.

The frequency is merely a suggestion from the module to the client. The client may not be able to send the commands as
fast as the module would like them.

See the description of the kNkMAIDCommand_Async command for more information.

9 Capabilities

Page 48 MAID 3.0

9.2 kNkMAIDCapability_ProgressProc

The module will call this callback during lengthy processes.

Object types Module, source, item or data object
ulType kNkMAIDCapType_Callback
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

If a command issued for the object will take a significant amount of time, the module will call this callback so the client
can provide the user with a progress display. How often, or whether to call this callback at all, is at the module’s
discretion.

The initial value will be NULL. The client can indicate it does not want to be given progress information by setting this
capability with the ulDataType parameter to the MAID entry point set to kNkMAIDDataType_Null.

See the description of the MAIDProgress callback function for more information.

9.3 kNkMAIDCapability_EventProc

The module will call this callback to notify the client of events.

Object types Module, source, item or data object
ulType kNkMAIDCapType_Callback
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

The initial value will be NULL. The client can indicate it does not want to be given event notification by setting this
capability with the ulDataType parameter to the MAID entry point set to kNkMAIDDataType_Null.

See the description of the MAIDEvent callback function for more information.

9.4 kNkMAIDCapability_DataProc

The module will call this callback to deliver data to the client.

Object types Data object only
ulType kNkMAIDCapType_Callback
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

The module is required to provide this capability for data objects.

The initial value will be NULL. The client must set this capability before starting an acquire. Once the data exchange is
complete, the client can set this capability with the ulDataType parameter to the MAID entry point set to
kNkMAIDDataType_Null.

See the description of the MAIDData callback function for more information.

9.5 kNkMAIDCapability_UIRequestProc

The module will call this callback to request that some user interface be shown.

Object types Module only
ulType kNkMAIDCapType_Callback
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

The module is required to provide this capability for module objects. The client must set this capability just after the
module is opened. If it does not, the module might not be able to notify the user or ask the user a question.

The initial value will be NULL.

See the description of the MAIDUIRequest callback function for more information.

 9 Capabilities

MAID 3.0 Page 49

9.6 kNkMAIDCapability_IsAlive

This is the objects validity state.

Object types Module, source, item or data object
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get

The module is required to provide this capability for all objects.

The value of this capability is usually TRUE. It is FALSE if the object is removed by the module or the object’s parent is
closed by the client.

9.7 kNkMAIDCapability_Children

This is the list of child source or item IDs.

Object types Module or source
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray

The module is required to provide this capability for module and source objects.

Within the NkMAIDArray structure, ulType will be kNkMAIDArrayType_Unsigned and wPhysicalBytes will be four .

9.8 kNkMAIDCapability_State

The client can use this capability save the state of the object for later retrieval.

Object types Module, source, item or data object
ulType kNkMAIDCapType_Array
ulOperations kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

The data within the array is entirely module dependent and will not be interpreted by the client. The data will be saved
and restored by the client verbatim.

Within the NkMAIDArray structure, ulType will be kNkMAIDArrayType_Unsigned, wPhysicalBytes will be one and
wLogicalBits will be eight.

9.9 kNkMAIDCapability_Name

This is the name of the object.

Object types Module, source, item or data object
ulType kNkMAIDCapType_String
ulOperations kNkMAIDCapOperation_Get

Unlike the kNkMAIDCapability_Description capability, this capability cannot be set. The module should use that
capability if it can store a descriptive name and it wishes to allow the user to edit that name.

9.10 kNkMAIDCapability_Description

This is the description of the object.

Object types Module, source, item or data object
ulType kNkMAIDCapType_String or kNkMAIDCapType_Array
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray for an array type, possibly

kNkMAIDCapOperation_Set

The module will provide this capability if it can describe the object in more detail than the kNkMAIDCapability_Name
capability. This will allow the user to better identify the object described.

9 Capabilities

Page 50 MAID 3.0

The module may implement this capability as an array. The ulType member of the NkMAIDArray structure will be
kNkMAIDArrayType_String or kNkMAIDArrayType_PackedString.

9.11 kNkMAIDCapability_Interface

This is the description of the physical interface being used to communicate with the source.

Object types Source only
ulType kNkMAIDCapType_String
ulOperations kNkMAIDCapOperation_Get

This will allow the user to better identify the source.

9.12 kNkMAIDCapability_DataTypes

This is the data types available from an item or the data types that a source can produce.

Object types Item or source
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

The value will be a bitwise combination of the eNkMAIDDataObjType values. The value kNkMAIDDataObjType_File
should not be used in connection with this capability. This value is to be used only for data delivery.

9.13 kNkMAIDCapability_DateTime

This is the date and time of the item’s capture.

Object types Item only
ulType kNkMAIDCapType_DateTime
ulOperations kNkMAIDCapOperation_Get

This capability will only be provided by modules for devices with storage capabilities. A scanner module will not
provide it.

9.14 kNkMAIDCapability_StoredBytes

This is the size of the object in bytes as it is stored in the device.

Object types Item or data object
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

This capability will only be provided by modules for devices with storage capabilities.

9.15 kNkMAIDCapability_Eject

This will eject the media from the source device.

Object types Source or item
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

If this capability is started for a source, all media will be ejected. If it is started for an item, only the media for that item
will be ejected.

 9 Capabilities

MAID 3.0 Page 51

9.16 kNkMAIDCapability_Feed

This will feed media into the source device.

Object types Source only
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

If there is no media to be fed, the module will return kNkMAIDResult_NoMedia.

9.17 kNkMAIDCapability_Capture

This will capture another item for the source device.

Object types Source only
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

Upon successful completion of this process, the source will have an addition child item. The source should enumerate
it’s items again.

9.18 kNkMAIDCapability_Mode

This is the acquire mode for the data object.

Object types Data object only
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

It is up to the module to decide what modes are available and what they mean. The user will make the choice from the
string array. The ulType member of the NkMAIDEnum structure will be kNkMAIDArrayType_String or
kNkMAIDArrayType_PackedString.

9.19 kNkMAIDCapability_Acquire

This will start the acquire.

Object types Data object only
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

The module will begin calling the data object’s data delivery callback with data. The module may also call the data
object’s progress callback if the acquire will take a significant amount of time.

9.20 kNkMAIDCapability_Start

The starting position for the acquire in seconds.

Object types Sound or Video
ulType kNkMAIDCapType_Float
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

This is the offset from the beginning of the sound or video object. This capability will only be provided by modules for
devices with storage capabilities.

9 Capabilities

Page 52 MAID 3.0

9.21 kNkMAIDCapability_Length

The length available or the length to be acquired in seconds.

Object types Sound or Video
ulType kNkMAIDCapType_Float
ulOperations kNkMAIDCapOperation_Get, possibly kNkMAIDCapOperation_Set, possibly

kNkMAIDCapOperation_GetDefault

The default value will be the total length available from a module for a device with storage capabilities.

9.22 kNkMAIDCapability_SampleRate

The number of samples per second to acquire.

Object types Sound or video
ulType kNkMAIDCapType_Enum or kNkMAIDCapType_Range
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, possibly kNkMAIDCapOperation_Set

Within the NkMAIDEnum structure, the ulType member will be kNkMAIDArrayType_Float.

9.23 kNkMAIDCapability_Stereo

This will select the type as either mono or stereo.

Object types Sound or video
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If the module does not provide this capability, the client will assume that the device is only capable of mono acquires.

9.24 kNkMAIDCapability_Samples

The number of samples that will be acquired with consideration given to the current state of the data object.

Object types Sound or video
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

9.25 kNkMAIDCapability_Filter

This will select the filter for the light source of the device.

Object types Image or thumbnail
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

Within the NkMAIDArray structure, the ulType member will be kNkMAIDArrayType_Unsigned, wPhysicalBytes will
be four and wLogicalBits will be 32. The array will contain values from the eNkMAIDFilter enumeration.

9.26 kNkMAIDCapability_Prescan

The device will automatically set itself up for the original media.

Object types Image or thumbnail
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

 9 Capabilities

MAID 3.0 Page 53

9.27 kNkMAIDCapability_AutoFocus

The device will automatically set the focus of the device.

Object types Image or thumbnail
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

The module should update the value of the kNkMAIDCapability_Focus capability if it is able to.

9.28 kNkMAIDCapability_AutoFocusPt

This is the point that the module focuses upon.

Object types Image or thumbnail
ulType kNkMAIDCapType_Point
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

The module is not required to provide this capability if it does not support focusing on a single point.

9.29 kNkMAIDCapability_Focus

This is the focus position of the device.

Object types Image or thumbnail
ulType kNkMAIDCapType_Enum or kNkMAIDCapType_Range
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

Within the NkMAIDEnum structure, the ulType member will be kNkMAIDArrayType_Float.

9.30 kNkMAIDCapability_Coords

This is the target area to be acquired expressed as full resolution pixels.

Object types Image or thumbnail
ulType kNkMAIDCapType_Rect
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set, kNkMAIDCapOperation_GetDefault

The default value will be the largest area than can be acquired.

9.31 kNkMAIDCapability_Resolution

This is the acquire resolution in pixels/inch.

Object types Image or thumbnail
ulType kNkMAIDCapType_Enum or kNkMAIDCapType_Range
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

Within the NkMAIDEnum structure, the ulType member will be kNkMAIDArrayType_Float.

9.32 kNkMAIDCapability_Preview

This will set a priority on speed or quality.

Object types Image or thumbnail
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If the client sets this capability to TRUE, the module should try to acquire as quickly as possible. If the client sets it to
FALSE, the module should try to produce the best quality possible.

9 Capabilities

Page 54 MAID 3.0

9.33 kNkMAIDCapability_Negative

This will select the type of original media as either negative or positive.

Object types Image or thumbnail
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If the module does not provide this capability, the client will make no assumptions about the original media.

9.34 kNkMAIDCapability_ColorSpace

This will select the color space of the data delivered to the client.

Object types Image or thumbnail
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

Within the NkMAIDEnum structure, the ulType member will be kNkMAIDArrayType_Unsigned and wPhysicalBytes
will be four. The enumeration will contain one or more values from the eNkMAIDColorSpace enumeration.

9.35 kNkMAIDCapability_Bits

This will select the number of bits to acquire per color.

Object types Image or thumbnail
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set, kNkMAIDCapOperation_GetArray

If the module does not provide this capability, the client will assume that eight bits per color will be acquired.

9.36 kNkMAIDCapability_Planar

This will select or merely report the transfer mode supported by the object.

Object types Image or thumbnail
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; possibly kNkMAIDCapOperation_Set

If the module only wishes to transfer the data as either planar or interleaved, it will not support the
kNkMAIDCommand_CapSet command.

9.37 kNkMAIDCapability_Lut

This is a set of look up tables to be applied to the image data before it is transferred to the client.

Object types Image or thumbnail
ulType kNkMAIDCapType_Array
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set, kNkMAIDCapOperation_GetArray

Within the NkMAIDArray structure, the ulType member will be kNkMAIDArrayType_Unsigned. For color images, the
array will be two or more look up tables, with the number of and order of the tables depending on the current color
space. For RGB, there would be three tables, in the order of red, green, blue. For CMYK, there would be four tables, in
the order of cyan, magenta, yellow, black. For monochrome images, there will be only one look up table.

 9 Capabilities

MAID 3.0 Page 55

9.38 kNkMAIDCapability_Transparency

This will select the type of original media as either transparent or reflective.

Object types Image or thumbnail
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If the module does not provide this capability, the client will make no assumptions about the original media.

9.39 kNkMAIDCapability_Threshold

This is the threshold level for bilevel lineart images.

Object types Image or thumbnail
ulType kNkMAIDCapType_Range
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

9.40 kNkMAIDCapability_Pixels

The number of pixels that will be acquired with consideration given to the current state of the data object.

Object types Image, thumbnail, or video
ulType kNkMAIDCapType_Size
ulOperations kNkMAIDCapOperation_Get

9.41 kNkMAIDCapability_ForceScan

This will determine whether unnecessary acquisitions (as determined by the module) will be performed by the device.

Object types Data object only
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If this capability is set to TRUE, the device will always perform a physical scan when the kNkMAIDCapability_Acquire
capability is started. If this capability is set to FALSE, the module may decide, based on its current state, whether such
an acquisition is necessary. If a physical acquisition is not necessary, the module must go through the same steps that
would normally be incurred during an acquisition (data delivery, I/O completion, etc.), except for the fact that the data
would be supplied from an internal buffer as opposed to coming from a device. The default value for this capability is
TRUE.

9.42 kNkMAIDCapability_ForcePrescan

This will determine whether unnecessary prescans (as determined by the module) will be performed by the device.

Object types Data object only
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If this capability is set to TRUE, the device will always perform a physical prescan when the kNkMAIDCapability_Prescan
capability is started. If this capability is set to FALSE, the module may decide, based on its current state, whether such a
prescan is necessary. If a physical prescan is not necessary, the module must go through the same steps that would
normally be incurred during a prescan (I/O completion, etc.). The default value for this capability is TRUE.

9 Capabilities

Page 56 MAID 3.0

9.43 kNkMAIDCapability_ForceAutoFocus

This will determine whether unnecessary auto focus operations (as determined by the module) will be performed by the
device.

Object types Data object only
ulType kNkMAIDCapType_Boolean
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

If this capability is set to TRUE, the device will always perform a physical auto focus when the
kNkMAIDCapability_AutoFocus capability is started. If this capability is set to FALSE, the module may decide, based on
its current state, whether such an auto focus operation is necessary. If a physical auto focus is not necessary, the module
must go through the same steps that would normally be incurred during an auto focus operation (I/O completion, etc.).
The default value for this capability is TRUE.

9.44 kNkMAIDCapability_NegativeDefault

This is a source capability which will allow the default value of kNkMAIDCapability_Negative to be set.

Object types Source object only
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_Set

Once this capability is set, the source will use that value as the default value for kNkMAIDCapability_Negative for all
image objects opened under this source thereafter. If this capability is not supported by the source, the module will use
a reasonable default value for the items.

The module may change this capability in response to a change in the hardware. If the module initiates such a change,
that change must be accompanied by a kNkMAIDEvent_CapChange event sent to the source.

9.45 kNkMAIDCapability_Firmware

This is a source capability which reports the firmware version of a device.

Object types Source object only
ulType kNkMAIDCapType_String
ulOperations kNkMAIDCapOperation_Get

This capability allows the client to read the firmware version of a device.

9.46 kNkMAIDCapability_CommunicationLevel1

This is a source capability which will allow the client to specify the method of communication to be used with the device.

Object types Source object only
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_GetArray; kNkMAIDCapOperation_GetDefault;

kNkMAIDCapOperation_Set

The module will determine what methods of communications it can support. The user will make the choice from the
string array. The ulType member of the NkMAIDEnum structure will be kNkMAIDArrayType_String or
kNkMAIDArrayType_PackedString. One such list, for example, may include the following strings: "COM1", "COM2",
"COM3", "COM4", and "SCSI". Optionally, the module may also analyze the system and eliminate any methods of
communication that are not supported on that system. Using the example above, "COM3" and "COM4" may be
removed if the system does not have those comm ports available.

 9 Capabilities

MAID 3.0 Page 57

9.47 kNkMAIDCapability_CommunicationLevel2

This is a source capability which will allow the client to specify more detail about the method of communication to be
used with the device.

Object types Source object only
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_GetArray; kNkMAIDCapOperation_GetDefault;

kNkMAIDCapOperation_Set

This capability will consist of a list of strings which will further specify the method of communication to be used. The
user will make the choice from the string array. The ulType member of the NkMAIDEnum structure will be
kNkMAIDArrayType_String or kNkMAIDArrayType_PackedString. If the communication method selected in
kNkMAIDCapability_CommunicationLevel1 is "COM1", then a typical list for this capability might include the following
strings: "Comm Speed 19,200", "Comm Speed 38,400", "Comm Speed 57,600", and "Comm Speed 115,200". Optionally,
the module may also analyze the system and eliminate any methods of communication that are not supported on that
system. If the method of communication is fully described in kNkMAIDCapability_CommunicationLevel1 and no further
information is needed, then the ulElements member of the NkMAIDEnum structure should be set to zero.

9.48 kNkMAIDCapability_BatteryLevel

This is a source capability which will report the level of the battery.

Object types Source object only
ulType kNkMAIDCapType_Integer
ulOperations kNkMAIDCapOperation_Get

If the device can use a battery, this capability should be supported. If the battery is in use at the time this capability is
queried, the module should return an integer between 0 and 100, inclusive, which indicates the percentage of battery life
remaining. If the battery is not in use at the time this capability is queried (e.g. an external power supply is attached), the
module should return a value of -1.

9.49 kNkMAIDCapability_FreeBytes

This is a source capability which will report the number of bytes available in the internal memory of the device.

Object types Source object only
ulType kNkMAIDCapType_Float
ulOperations kNkMAIDCapOperation_Get

If the device can use some sort of internal storage (e.g. Compact Flash), this capability should be supported. This
capability should report the number of available bytes as a positive integer value. A floating point value is used to allow
for a higher upper limit.

9.50 kNkMAIDCapability_FreeItems

This is a source capability which will report the number of items that can be added to the device using the available
internal memory and the current device settings.

Object types Source object only
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

If the device can use some sort of internal storage (e.g. Compact Flash), this capability should be supported.

9 Capabilities

Page 58 MAID 3.0

9.51 kNkMAIDCapability_Remove

This capability instructs the device to remove an object from its internal memory.

Object types Source, item, data object
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

If this capability is started for an item or data object, that object should be removed from the device. If this capability is
started for a source object, all item objects and their corresponding data objects should be removed from the device.

9.52 kNkMAIDCapability_FlashMode

This is the current flash mode.

Object types Source, item, data object
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get; kNkMAIDCapOperation_GetArray; kNkMAIDCapOperation_GetDefault;

kNkMAIDCapOperation_Set

Within the NkMAIDEnum structure, the ulType member will be kNkMAIDArrayType_Unsigned and wPhysicalBytes
will be four. The enumeration will contain one or more values from the eNkMAIDFlashMode enumeration.

9.53 kNkMAIDCapability_ModuleType

This is the type of device for which this module is intended.

Object types Module object only
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

This capability will return one or more bit values from the eNkMAIDModuleType enumeration. This will help the
client determine if this module should be used, or perhaps which user interface to display.

9.54 kNkMAIDCapability_AcquireStreamStart

This will start a stream acquire.

Object types Data object only
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

The module will begin calling the data object’s data delivery callback with data. This process is designed to continue
until the client stops it, so the progress callback should not be called.

9.55 kNkMAIDCapability_AcquireStreamStop

This will stop a stream acquire.

Object types Data object only
ulType kNkMAIDCapType_Process
ulOperations kNkMAIDCapOperation_Start

If a stream acquire is not in progress, the module will return kNkMAIDResult_UnexpectedError.

 9 Capabilities

MAID 3.0 Page 59

9.56 kNkMAIDCapability_AcceptDiskAcquisition

This capability is used to inform the module that it may deliver files on disk in response to kNkMAIDCapability_Acquire.

Object types Source object only
ulType kNkMAIDCapType_Generic
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_Set

When the client requests image data (with kNkMAIDCapability_Acquire), the module should not deliver disk files
unless this capability has been called by the client with a non-null parameter. The client may use this capability to set a
disk location. Once this is done, the module may deliver data by disk file, instead of by memory. After the disk file has
been written and closed, the module should call the data object's data delivery callback. For Windows, the pData
parameter should point to an NkMAIDString structure, which will contain the complete path (but not the name) for the
new file. For Macintosh, the pData parameter should point to an FSSpec structure, which will indicate a folder for the
new file. The module will choose a unique file name in the specified folder. Once the data delivery callback is called, the
module should not access this file again for any reason. While preparing and writing the file to disk, the module may
call the data object’s progress callback if the acquisition will take a significant amount of time.

9.57 kNkMAIDCapability_Version

This is the version of the MAID specification which was followed in writing the current module.

Object types Module object only
ulType kNkMAIDCapType_Unsigned
ulOperations kNkMAIDCapOperation_Get

The client may determine the version of the MAID specification to which the module was written with this capability.
This capability was introduced in MAID version 3.1. Therefore, if the module was written to a standard prior to 3.1, this
capability will not be supported (will return kNkMAIDResult_NotSupported).

This capability will return a 4-byte unsigned value. The MAID version number will be broken into four parts, with the
most significant part going into the most significant byte; the least significant part going into the least significant byte.
For MAID version 3.1, for example, the most significant byte will contain 3, the next byte will contain 1, the next byte
will contain 0, and the least significant byte will contain 0.

9.58 kNkMAIDCapability_FilmFormat

This will select the film format.

Object types Source object only
ulType kNkMAIDCapType_Enum
ulOperations kNkMAIDCapOperation_Get, kNkMAIDCapOperation_GetArray, kNkMAIDCapOperation_Set

The ulType member of the NkMAIDEnum structure will be kNkMAIDArrayType_String or
kNkMAIDArrayType_PackedString. The enumeration will contain one or more values.

The client can select film format with this capability. For example, film format includes “35mm”, “6*6” and “6*4.5”. If the
module supports only one format, this enumeration will contain only one value.

9 Capabilities

Page 60 MAID 3.0

9.59 kNkMAIDCapability_TotalBytes

This is a source capability which will report the total number of bytes in the internal memory of the device.

Object types Source object only
ulType kNkMAIDCapType_Float
ulOperations kNkMAIDCapOperation_Get

If the device can use some sort of internal storage (e.g. Compact Flash), this capability should be supported. This
capability should report the total number of bytes as a positive integer value. A floating point value is used to allow for
a higher upper limit.

MAID 3.0 Page 61

10 Function Definitions

10.1 MAID Entry Point Function

LONG MAIDEntryPoint(

 LPNkMAIDObject pObject, // module, source, item or data object

 ULONG ulCommand, // one of eNkMAIDCommand

 ULONG ulParam, // parameter for the command

 ULONG ulDataType, // one of eNkMAIDDataType

 NKPARAM data, // pointer or long integer

 LPNKFUNC pfnComplete, // function to call when complete, may be null

 NKREF refComplete // passed to pfnComplete

);

The return value will be one of eNkMAIDResult.

10.2 MAID Completion Function

void MAIDCompletion(

 LPNkMAIDObject pObject, // module, source, item or data object

 ULONG ulCommand, // one of eNkMAIDCommand

 ULONG ulParam, // parameter for the command

 ULONG ulDataType, // one of eNkMAIDDataType

 NKPARAM data, // pointer or long integer

 NKREF refComplete, // passed to MAIDEntryPoint

 LONG nResult // one of eNkMAIDResult

);

This is a placeholder for a callback function supplied by the client that will be called by the module after the command is
complete. The parameters are the same parameters that were passed to the MAID entry point.

10.3 MAID Data Delivery Function

LONG MAIDData(

 NKREF refProc, // reference set by client

 LPNkMAIDDataInfo pDataInfo, // cast to LPNkMAIDImageInfo or LPNkMAIDSoundInfo

 LPVOID pData

);

This is a placeholder for a callback function supplied by the client that will be called by the module to deliver data. The
return value will be one of eNkMAIDResult.

10.4 MAID Event Notification Function

void MAIDEvent(

 NKREF refProc, // reference set by client

 ULONG ulEvent, // one of eNkMAIDEvent

 NKPARAM data // pointer or long integer

);

This is a placeholder for a callback function supplied by the client that will be called by the module to notify the client of
events.

10 Function Definitions

Page 62 MAID 3.0

10.5 MAID Progress Notification Function

void MAIDProgress(

 ULONG ulCommand, // one of eNkMAIDCommand

 ULONG ulParam, // parameter for the command

 NKREF refProc, // reference set by client

 ULONG ulDone, // the numerator

 ULONG ulTotal // the denominator

);

This is a placeholder for a callback function supplied by the client that will be called by the module to notify the client of
the progress of an asynchronous command.

For commands whose progress can be measured, the module will call this function at the start of the command with the
ulDone parameter set to zero and the ulTotal parameter set to some positive value. When the command is complete, the
module will call this function with the ulDone parameter equal to the ulTotal parameter. The module will call this
function with the ulDone parameter set to zero and ulTotal exactly once each.

For commands whose progress cannot be measured, the module will call this function at the start of the command with
the ulDone parameter set to one (1) and the ulTotal parameter set to zero. When the command is complete, the module
will call this function with the ulDone parameter and the ulTotal parameter both equal to zero.

10.6 MAID User Interface Request Function

ULONG MAIDUIRequest(

 NKREF refProc, // reference set by client

 LPNkMAIDUIRequestInfo pUIRequest // information about the UI request

);

This is a placeholder for a callback function supplied by the client that will be called by the module to notify the user or
ask the user a question. The pObject parameter is used if the UI Request contains capabilities to display to the user. If
there are no capabilities to display, this parameter may be set to NULL. The pUIRequst parameter will point to an
NkMAIDUIRequestInfo structure, which contains information about the message, the buttons, and optionally, which
capabilities to display. The return value will be one of eNkMAIDUIRequestResult.

MAID 3.0 Page 63

11 History

11.1 Changes Since v3.0 Revision 2

Added a Usage chapter.
Added this History chapter.
Wrote the Capabilities chapter.
Filled in the function descriptions in the Function Definitions chapter.
Added the NkMAIDPoint and NkMAIDRect structures.
Added the eNkMAIDFilter enumeration.
Changes to the eNkMAIDResult enumeration: added kNkMAIDResult_Aborted, kNkMAIDResult_NoMedia; removed kNkMAIDResult_NotLocked,

kNkMAIDResult_Locked.
Changes to the eNkMAIDCommand enumeration: added kNkMAIDCommand_Abort; removed kNkMAIDCommand_OpenModule,

kNkMAIDCommand_GetChildCount, kNkMAIDCommand_GetChildIDs; renamed kNkMAIDCommand_OpenChild to kNkMAIDCommand_Open,
kNkMAIDCommand_ClearToMark to kNkMAIDCommand_AbortToMark.

Changes to the eNkMAIDCapability enumeration: added kNkMAIDCapability_Children, kNkMAIDCapability_Start, kNkMAIDCapability_Prescan,
kNkMAIDCapability_AutoFocus, kNkMAIDCapability_AutoFocusPt, kNkMAIDCapability_Preview, kNkMAIDCapability_Transparency,
kNkMAIDCapability_Threshold; removed kNkMAIDCapability_Abort, kNkMAIDCapability_DataObj; renamed
kNkMAIDCapability_DataAvailable to kNkMAIDCapability_DataTypes; renamed kNkMAIDCapability_Date to kNkMAIDCapability_DateTime,
kNkMAIDCapability_AcquireMode to kNkMAIDCapability_Mode, kNkMAIDCapability_LightSource to kNkMAIDCapability_Filter.

Changes to the eNkMAIDDataType enumeration: added kNkMAIDDataType_PointPtr, kNkMAIDDataType_RectPtr.
Changes to the eNkMAIDArrayType enumeration: added kNkMAIDArrayType_Point, kNkMAIDArrayType_Rect.
Changes to the eNkMAIDCapType enumeration: added kNkMAIDCapType_Point, kNkMAIDCapType_Rect.
Changed the comments of kNkMAIDCommand_Mark and kNkMAIDCommand_AbortToMark.
Changed the ulObjectType member of the NkMAIDObject structure to ulType.

11.2 Changes Since v3.0 Revision 3

Added a reference parameter to the data delivery, event notification and progress notification callback functions in the Function Definitions and
Structures and Types chapters.

Wrote the Usage chapter.
Added definitions for ULONG, NKPARAM, LPVOID, NKREF, LPMAIDEntryPointProc, LPMAIDCompletionProc, LPMAIDDataProc,

LPMAIDEventProc.
Changes to the eNkMAIDDataType enumeration: removed kNkMAIDDataType_CharPtr, kNkMAIDDataType_ShortPtr, kNkMAIDDataType_BytePtr,

kNkMAIDDataType_WordPtr; renamed kNkMAIDDataType_LongPtr to kNkMAIDDataType_IntegerPtr, kNkMAIDDataType_DwordPtr to
kNkMAIDDataType_UnsignedPtr.

Changes to the eNkMAIDCapType enumeration: removed kNkMAIDCapType_Char, kNkMAIDCapType_Short, kNkMAIDCapType_Byte,
kNkMAIDCapType_Word; renamed kNkMAIDCapType_Long to kNkMAIDCapType_Integer, kNkMAIDCapType_Dword to
kNkMAIDCapType_Unsigned.

There was no explanation of the kNkMAIDCapability_DataTypes capability in the Capabilities chapter.

11.3 Changes Since v3.0 Revision 4

Added chapter and section numbers.
Changes to the eNkMAIDCapability enumeration: added kNkMAIDCapability_Pixels, kNkMAIDCapability_Stereo, kNkMAIDCapability_Samples;

renamed kNkMAIDCapability_Size to kNkMAIDCapability_StoredBytes.
Changes to the eNkMAIDEvent enumeration: renamed kNkMAIDEvent_Add to kNkMAIDEvent_AddChild, renamed kNkMAIDEvent_Remove to

kNkMAIDEvent_RemoveChild.
Changes to the eNkMAIDDataType enumeration: added kNkMAIDDataType_SizePtr.
Changes to the eNkMAIDArrayType enumeration: added kNkMAIDArrayType_Size.
Changes to the eNkMAIDCapType enumeration: added kNkMAIDCapType_Size.
Added the ulDimSize3 member to the NkMAIDArray structure and revised the structure description.
Added the NkMAIDUIEventInfo, NkMAIDDataInfo, NkMAIDImageInfo and NkMAIDSoundInfo structures.

11 History

Page 64 MAID 3.0

11.4 Changes Since v3.0 Revision 5

Changes to Usage chapter: removed section “Child Addition and Removal”, added “Event Notification” and “User Interface Requests” sections.
Changes to eNkMAIDEvent: added kNkMAIDEvent_NewMedia, kNkMAIDEvent_MediaRemoved; removed kNkMAIDEvent_UserInterface.
Renamed the eNkMAIDUIEventType enumeration to eNkMAIDUIRequestType. Changed the description to fit the new usage.
Renamed the eNkMAIDEventResult enumeration to eNkMAIDUIRequestResult. Changed the description to fit the new usage.
Changes to eNkMAIDCommand: added kNkMAIDCommand_EnumChildren.
Changes to eNkMAIDCapability: added kNkMAIDCapability_UIRequestProc, kNkMAIDCapability_MediaPresent.
Changed the description of kNkMAIDCommand_Open in the Commands and Usage chapters.
Added a User Interface Request function pointer type LPMAIDUIRequestProc.
Changed the description and type name of the User Interface Request Structure in the Structures and Types chapter.
Added a description for kNkMAIDCommand_EnumChildren to the Commands chapter.
Changed the return value of the MAID Event Notification callback function from ULONG to void.

11.5 Changes Since v3.0 Revision 6

Changes to eNkMAIDResult: added kNkMAIDResult_ZombieObject, kNkMAIDResult_OrphanedChildren.
Changes to eNkMAIDCommand: added kNkMAIDCommand_GetParent.
Changes to eNkMAIDCapability: added kNkMAIDCapability_Alive, kNkMAIDCapability_WarmedUp.
Changes to eNkMAIDEvent: added kNkMAIDEvent_CapChange, kNkMAIDEvent_OrphanedChildren, removed kNkMAIDEvent_NewMedia,

kNkMAIDEvent_MediaRemoved.
Changes to eNkMAIDUIRequestType: added kNkMAIDUIRequestType_CustomOkCancel.
Explained more about references in Object Structure in the Structures and Types chapter.
Explained more about prompt string in User Interface Request Structure in the Structures and Types chapter.
Explained more about kNkMAIDCommand_Close in the Commands chapter.
Explained more about kNkMAIDCapability_Eject in the Capabilities chapter.
Added the Result Codes and Events chapters.
Changed the NkMAIDRect structure from x1, y1, x2, y2 to x, y, w, h.
Changed the wBits member of the NkMAIDImageInfo structure from a single value to an array of four values. Explained about it’s use in the

Structures and Types chapter.

11.6 Changes Since v3.0 Revision 7

Changed parameter type in section 5.6 from LPNKFUNC to LPMAIDCompletionProc.
Added the pObject parameter to the MAIDUIRequest function definition in section 10.6, and to the MAIDUIRequest typedef in section 5.11.
Added the data parameter to the NkMAIDUIRequestInfo structure definition and a description of its use in section 5.22.
Removed the kNkMAIDUIRequestType_CustomOkCancel value from the eNkMAIDUIRequestType enumeration in section 4.10.
Added section 4.15, which describes the color space enumeration, eNkMAIDColorSpace.
Changed kNkMAIDCapability_Color to kNkMAIDCapability_ColorSpace in the eNkMAIDCapability enumeration in section 4.14.
Changed kNkMAIDCapability_Color to kNkMAIDCapability_ColorSpace in section 9.34.
Changed the name of kNkMAIDCapability_Alive to kNkMAIDCapability_IsAlive is section 9.6
Changed the NkMAIDImageInfo structure in section 5.24 to accommodate various color spaces.

11.7 Changes Since v3.0 Revision 8

Reversed the History section so most recent history is at the end.
Fixed several undefined references in document.
Changed an enumeration reference from eNkMAIDDataType to eNkMAIDDataObjType in section 9.12.
Added ulValueIndex and ulDefaultIndex members to the NkMAIDRange structure in section 5.19. Also change the name of nSteps to ulSteps.
Added pObject member to the NkMAIDUIRequestInfo structure in section 5.22 and removed pObject from the MAIDUIRequest function definition in

section 10.6.
Removed the ulValue and ulDefault members from the NkMAIDArray structure in section 5.18. This structure is no longer used for enumerations.
Added the NkMAIDEnum structure in section 5.26.
Added kNkMAIDDataType_EnumPtr to the eNkMAIDDataType enumeration in section 4.3.
Added kNkMAIDCapType_Enum to the eNkMAIDCapType enumeration in section 4.5.
Added kNkMAIDCapType_Enum to the CapSet command in section 8.7.; to the CapGetDefault command in section 8.9; to the CapGetArray

command in section 8.10.
Changed the capability type of kNkMAIDCapability_Children to be kNkMAIDCapType_Enum in section 9.7.
Changed the capability type of kNkMAIDCapability_Mode to be kNkMAIDCapType_Enum in section 9.18.
Changed the capability type of kNkMAIDCapability_SampleRate to be kNkMAIDCapType_Enum in section 9.22.
Changed the capability type of kNkMAIDCapability_Filter to be kNkMAIDCapType_Enum in section 9.25.
Changed the capability type of kNkMAIDCapability_Focus to be kNkMAIDCapType_Enum in section 9.29.
Changed the capability type of kNkMAIDCapability_Resolution to be kNkMAIDCapType_Enum in section 9.31.
Changed the capability type of kNkMAIDCapability_ColorSpace to be kNkMAIDCapType_Enum in section 9.34.

History

MAID 3.0 Page 65

11.8 Changes Since v3.0 Revision 9

Removed the LPNkMAIDObject parameter from the MAIDUIRequestProc function definition in section 5.11.
Added a description of capability groups to the introduction of section 9.
Modified kNkMAIDCapability_Lut to handle multiple color spaces in section 9.37.
Clarified the usage of the array member (data) in the User Interface Request Structure in section 5.22.
Corrected the example in section 3.4, which interchanged the commands kNkMAIDCommand_CapGet and kNkMAIDCommand_CapGetArray.
Specified that zero-based indexes are to be used in the NkMAIDRange structure (section 5.19) and in the NkMAIDEnum structure (section 5.26).
Specified that the eNkMAIDCapability enumeration should start with its first member at 1, instead of 0 in section 4.14.
Clarified the usage of the kNkMAIDEvent_CapChange event in section 7.5.
Added "data object" to the list of object types supporting kNkMAIDCapability_EventProc in section 9.3.
Removed kNkMAIDCapVisibility_Normal from the eNkMAIDCapVisibility enumeration in section 4.7.
Added the following values to the eNkMAIDResult enumeration in section 4.1: kNkMAIDResult_NoDataProc, kNkMAIDResult_OutOfMemory,

kNkMAIDResult_UnexpectedError, and kNkMAIDResult_HardwareError.
Added descriptions for new result codes in sections 6.12, 6.13, 6.14, and 6.15.
Added "thumbnail" to the supported object types for the following capabilities in section 9: kNkMAIDCapability_Filter, kNkMAIDCapability_Prescan,

kNkMAIDCapability_AutoFocus, kNkMAIDCapability_AutoFocusPt, kNkMAIDCapability_Focus, kNkMAIDCapability_Coords,
kNkMAIDCapability_Resolution, kNkMAIDCapability_Preview, kNkMAIDCapability_Negative, kNkMAIDCapability_ColorSpace,
kNkMAIDCapability_Bits, kNkMAIDCapability_Planar, kNkMAIDCapability_Lut, kNkMAIDCapability_Transparency,
kNkMAIDCapability_Threshold, and kNkMAIDCapability_Pixels.

11.9 Changes Since v3.0 Revision 10

Added kNkMAIDResult_MissingComponent to the eNkMAIDResult enumeration in sections 4.1 and 6.16.
Added kNkMAIDCapability_ForceScan, kNkMAIDCapability_ForcePrescan, and kNkMAIDCapability_ForceAutoFocus to the eNkMAIDCapability

enumeration in section 4.14.
Added descriptions for kNkMAIDCapability_ForceScan, kNkMAIDCapability_ForcePrescan, and kNkMAIDCapability_ForceAutoFocus in sections

9.41, 9.42, and 9.43, respectively.
Added an lpDetail member to the NkMAIDUIRequestInfo structure in section 5.22.
Added kNkMAIDDataType_GenericPtr to the eNkMAIDDataType enumeration in section 4.3.
Added kNkMAIDCapType_Generic to the eNkMAIDCapType enumeration in section 4.5.
Added kNkMAIDCapType_Generic to the CapGet, CapSet, and CapGetDefault commands in sections 8.7, 8.8, and 8.9, respectively.

11.10 Changes Since v3.0 Revision 11

Added a sentence to the introduction of section 8 describing the limitations on calling asynchronous commands from within a callback function.
Added a new capability, kNkMAIDCapability_NegativeDefault to the enumeration in section 4.14.
Added a new enumeration, eNkMAIDBooleanDefault, in section 4.16.
Added kNkMAIDDataType_BoolDefaultPtr to the list of data types in section 4.3.
Added kNkMAIDCapType_BoolDefault to the list of capability types in section 4.5.
Added the description of kNkMAIDCapability_NegativeDefault in section 9.44.

11.10 Changes Since v3.0 Revision 12

Removed kNkMAIDDataType_BoolDefaultPtr from the enumeration of data types.
Added a paragraph to section 10.5 to describe the "undefined" progress state.

11.11 Changes Since v3.0 Revision 13

Added enumeration eNkMAIDModuleTypes in section 4.17.
Added enumeration eNkMAIDFileDataTypes in section 4.18
Added fRemoveObject member to NkMAIDImageInfo and NkMAIDSoundInfo structures in sections 5.24 and 5.25.
Added structure NkMAIDFileInfo in section 5.27
Added command kNkMAIDCommand_ResetToDefault in section 8.16.
Added the following new capabilities: 9.45 kNkMAIDCapability_CommunicationLevel1; 9.46 kNkMAIDCapability_CommunicationLevel2; 9.47

kNkMAIDCapability_BatteryLevel; 9.48 kNkMAIDCapability_FreeBytes; 9.49 kNkMAIDCapability_FreeItems; 9.50
kNkMAIDCapability_Remove; 9.51 kNkMAIDCapability_FlashMode; 9.52 kNkMAIDCapability_ModuleType; 9.53
kNkMAIDCapability_AcquireStreamStart; 9.54 kNkMAIDCapability_AcquireStreamStop, 9.55
kNkMAIDCapability_AcceptDiskAcquisition, 9.56 kNkMAIDCapbility_Version

Added the above capabilities to the eNkMAIDCapability enumeration in section 4.14.
Change location of MAID module files in section 3.1.

11 History

Page 66 MAID 3.0

11.12 Changes Since v3.1 Revision 1

Changed type of kNkMAIDCapability_NegativeDefault from "BooleanDefault" to "Unsigned" in section 4.14.
Changed the definition of kNkMAIDCapability_NegativeDefault in section 9.44
Removed from kNkMAIDBooleanDefault_None from enumeration eNkMAIDBooleanDefault.

11.13 Changes Since v3.1 Revision 2

Added kNkMAIDCapability_Firmware to eNkMAIDCapability enum in section 4.14.
Renumbered sections 9.45 through 9.57 to 9.46 throught 9.58.
Inserted kNkMAIDCapability description in section 9.45.

11.14 Changes Since v3.1 Revision 3

Added kNkMAIDResult_VendorBase to eNkMAIDResult enum in section 4.1.

11.15 Changes Since v3.1 Revision 4

Rearranged the values in eNkMAIDFileDataTypes in section 4.18 and added kNkMAIDFileDataTypes_NIF.
Added kNkMAIDEvent_CapChangeValueOnly to the eNkMAIDEvent enumeration in section 4.9.
Added a description of kNkMAIDEvent_CapChangeValueOnly in section 7.7.

11.16 Changes Since v3.1 Revision 5

Changed the description of kNkMAIDCapability_AcceptDiskAcquisition in section 9.56, so that the client specifies the destination folder but not the
file name.
Added kNkMAIDDataObjType_File to the eNkMAIDDataObjType enumeration in section 4.2.
Restricted the kNkMAIDDataObjType_File value when using kNkMAIDCapability_DataTypes in section 9.12.
Added information about kNkMAIDDataObjType_File in section 5.23.

11.17 Changes Since v3.1 Revision 6

Added kNkMAIDColorSpace_AppleRGB, kNkMAIDColorSpace_ColorMatchRGB, kNkMAIDColorSpace_NTSCRGB,
kNkMAIDColorSpace_BruceRGB, kNkMAIDColorSpace_AdobeRGB, kNkMAIDColorSpace_CIERGB, kNkMAIDColorSpace_AdobeWideRGB,
kNkMAIDColorSpace_NikonWideRGBg18 and kNkMAIDColorSpace_NikonWideRGBg22 to the eNkMAIDColorSpace enumeration in section 4.15.

11.18 Changes Since v3.1 Revision 7

Changed the AcceptDiskAcquisition capability data type to "generic pointer" in section 9.56.
Added kNkMAIDCapVisibility_Valid to the eNkMAIDCapVisibility enumeration in section 4.7.

11.19 Changes Since v3.1 Revision 8

Changed the names of elements of eNkMAIDColorSpace in section 4.1.5. Changed kNkMAIDColorSpace_NikonWideRGBg18 and
kNkMAIDColorSpace_NikonWideRGBg22 to kNkMAIDColorSpace_AppleRGB_Compensated and
kNkMAIDColorSpace_AdobeWideRGB_Compensated, respectively.

11.20 Changes Since v3.1 Revision 9

Changed kNkMAIDCapVisibility_Valid to kNkMAIDCapVisibility_Invalid and changed the value to 0x0020.

11.21 Changes Since v3.1 Revision 10

Removed kNkMAIDColorSpace_AdobeWideRGB_Compensated from the eNkMAIDColorSpace enum.

11.22 Changes Since v3.1 Revision 11

Changed the FlashMode capability from a string-type enumeration to an integer enumeration in Section 9.52.
Added eNkMAIDFlashMode enumeration in section 4.19.

History

MAID 3.0 Page 67

11.23 Changes Since v3.1 Revision 12

Added kNkMAIDFlashMode_SlowSyncRearCurtain in section 4.19.

11.24 Changes Since v3.1 Revision 14

Added kNkMAIDFileDataType_QuickTime in section 4.18.

11.25 Changes Since v3.1 Revision 15

Added kNkMAIDCapability_FilmFormat to eNkMAIDCapability enum in section 4.14.
Inserted kNkMAIDCapability description in section 9.58.

11.26 Changes Since v3.1 Revision 16

Added kNkMAIDCapability_TotalBytes to eNkMAIDCapability enum in section 4.14.
Inserted kNkMAIDCapability description in section 9.59.

11.27 Changes Since v3.1 Revision 17

3.1. Changed the explanation about load module.
3.16. Changed the explanation about unload module.
5.24. Changed about the explanation about Macintosh byte order.
5.25. Changed about the explanation about Macintosh byte order.

	MAID 3.1
	Revision 18
	Contents
	1 Authors
	2 Concepts
	2.1 The Big Picture

	Figure 1
	2.2 Abstractions

	Figure 2
	2.3 The Life Of An Object
	2.4 Double Vision

	Figure 3
	3 Usage
	3.1 Module Loading
	3.2 Module Initialization
	3.3 Capability Enumeration
	3.4 Reading Array Capabilities
	3.5 Using Range Capabilities
	3.6 Capability Groups
	3.7 Using Vendor Specific Capabilities
	3.8 Opening Sources and Items
	3.9 Opening Data Objects
	3.10 Data Transfer
	3.11 Saving And Restoring State
	3.12 Event Notification
	3.13 User Interface Requests
	3.14 Asynchronous Module Calls
	3.15 Module Termination
	3.16 Module Unloading

	4 Enumerations
	4.1 Result Codes
	4.2 Data Object Types
	4.3 Data Types
	4.4 Array Types
	4.5 Capability Types
	4.6 Capability Operations
	4.7 Capability Visibility
	4.8 Object Types
	4.9 Events
	4.10 User Interface Request Types
	4.11 User Interface Results
	4.12 Filters
	4.13 Commands
	4.14 Capabilities
	4.15 Color Spaces
	4.16 Boolean Defaults
	4.17 Module Types
	4.18 File Data Types
	4.19 Flash Modes

	5 Structures and Types
	5.1 Word Value
	5.2 Unsigned Long Value
	5.3 Parameter Value
	5.4 Pointer Value
	5.5 Reference Value
	5.6 MAID Entry Point Function Pointer
	5.7 MAID Completion Function Pointer
	5.8 MAID Data Delivery Function Pointer
	5.9 MAID Event Notification Function Pointer
	5.10 MAID Progress Notification Function Pointer
	5.11 MAID User Interface Request Function Pointer
	5.12 Callback Definition Structure
	5.13 Date/Time Structure
	5.14 Point Structure
	5.15 Size Structure
	5.16 Rectangle Structure
	5.17 String Structure
	5.18 Array Structure
	5.19 Range Structure
	5.20 Capability Information Structure
	5.21 Object Structure
	5.22 User Interface Request Structure
	5.23 Generic Data Delivery Structure
	5.24 Image Data Delivery Structure
	5.25 Sound Data Delivery Structure
	5.26 Enumeration Structure
	5.27 File Data Delivery Structure

	6 Result Codes
	6.1 kNkMAIDResult_NotSupported
	6.2 kNkMAIDResult_UnexpectedDataType
	6.3 kNkMAIDResult_ValueOutOfBounds
	6.4 kNkMAIDResult_BufferSize
	6.5 kNkMAIDResult_Aborted
	6.6 kNkMAIDResult_NoMedia
	6.7 kNkMAIDResult_NoEventProc
	6.8 kNkMAIDResult_ZombieObject
	6.9 kNkMAIDResult_NoError
	6.10 kNkMAIDResult_Pending
	6.11 kNkMAIDResult_OrphanedChildren
	6.12 kNkMAIDResult_NoDataProc
	6.13 kNkMAIDResult_OutOfMemory
	6.14 kNkMAIDResult_UnexpectedError
	6.15 kNkMAIDResult_HardwareError
	6.16 kNkMAIDResult_MissingComponent

	7 Events
	7.1 kNkMAIDEvent_AddChild
	7.2 kNkMAIDEvent_RemoveChild
	7.3 kNkMAIDEvent_WarmingUp
	7.4 kNkMAIDEvent_WarmedUp
	7.5 kNkMAIDEvent_CapChange
	7.6 kNkMAIDEvent_OrphanedChildren
	7.7 kNkMAIDEvent_CapChangeValueOnly

	8 Commands
	8.1 kNkMAIDCommand_Async
	8.2 kNkMAIDCommand_Open
	8.3 kNkMAIDCommand_Close
	8.4 kNkMAIDCommand_GetCapCount
	8.5 kNkMAIDCommand_GetCapInfo
	8.6 kNkMAIDCommand_CapStart
	8.7 kNkMAIDCommand_CapSet
	8.8 kNkMAIDCommand_CapGet
	8.9 kNkMAIDCommand_CapGetDefault
	8.10 kNkMAIDCommand_CapGetArray
	8.11 kNkMAIDCommand_Mark
	8.12 kNkMAIDCommand_AbortToMark
	8.13 kNkMAIDCommand_Abort
	8.14 kNkMAIDCommand_EnumChildren
	8.15 kNkMAIDCommand_GetParent
	8.16 kNkMAIDCommand_ResetToDefault

	9 Capabilities
	9.1 kNkMAIDCapability_AsyncRate
	9.2 kNkMAIDCapability_ProgressProc
	9.3 kNkMAIDCapability_EventProc
	9.4 kNkMAIDCapability_DataProc
	9.5 kNkMAIDCapability_UIRequestProc
	9.6 kNkMAIDCapability_IsAlive
	9.7 kNkMAIDCapability_Children
	9.8 kNkMAIDCapability_State
	9.9 kNkMAIDCapability_Name
	9.10 kNkMAIDCapability_Description
	9.11 kNkMAIDCapability_Interface
	9.12 kNkMAIDCapability_DataTypes
	9.13 kNkMAIDCapability_DateTime
	9.14 kNkMAIDCapability_StoredBytes
	9.15 kNkMAIDCapability_Eject
	9.16 kNkMAIDCapability_Feed
	9.17 kNkMAIDCapability_Capture
	9.18 kNkMAIDCapability_Mode
	9.19 kNkMAIDCapability_Acquire
	9.20 kNkMAIDCapability_Start
	9.21 kNkMAIDCapability_Length
	9.22 kNkMAIDCapability_SampleRate
	9.23 kNkMAIDCapability_Stereo
	9.24 kNkMAIDCapability_Samples
	9.25 kNkMAIDCapability_Filter
	9.26 kNkMAIDCapability_Prescan
	9.27 kNkMAIDCapability_AutoFocus
	9.28 kNkMAIDCapability_AutoFocusPt
	9.29 kNkMAIDCapability_Focus
	9.30 kNkMAIDCapability_Coords
	9.31 kNkMAIDCapability_Resolution
	9.32 kNkMAIDCapability_Preview
	9.33 kNkMAIDCapability_Negative
	9.34 kNkMAIDCapability_ColorSpace
	9.35 kNkMAIDCapability_Bits
	9.36 kNkMAIDCapability_Planar
	9.37 kNkMAIDCapability_Lut
	9.38 kNkMAIDCapability_Transparency
	9.39 kNkMAIDCapability_Threshold
	9.40 kNkMAIDCapability_Pixels
	9.41 kNkMAIDCapability_ForceScan
	9.42 kNkMAIDCapability_ForcePrescan
	9.43 kNkMAIDCapability_ForceAutoFocus
	9.44 kNkMAIDCapability_NegativeDefault
	9.45 kNkMAIDCapability_Firmware
	9.46 kNkMAIDCapability_CommunicationLevel1
	9.47 kNkMAIDCapability_CommunicationLevel2
	9.48 kNkMAIDCapability_BatteryLevel
	9.49 kNkMAIDCapability_FreeBytes
	9.50 kNkMAIDCapability_FreeItems
	9.51 kNkMAIDCapability_Remove
	9.52 kNkMAIDCapability_FlashMode
	9.53 kNkMAIDCapability_ModuleType
	9.54 kNkMAIDCapability_AcquireStreamStart
	9.55 kNkMAIDCapability_AcquireStreamStop
	9.56 kNkMAIDCapability_AcceptDiskAcquisition
	9.57 kNkMAIDCapability_Version
	9.58 kNkMAIDCapability_FilmFormat
	9.59 kNkMAIDCapability_TotalBytes

	10 Function Definitions
	10.1 MAID Entry Point Function
	10.2 MAID Completion Function
	10.3 MAID Data Delivery Function
	10.4 MAID Event Notification Function
	10.5 MAID Progress Notification Function
	10.6 MAID User Interface Request Function

	11 History
	11.1 Changes Since v3.0 Revision 2
	11.2 Changes Since v3.0 Revision 3
	11.3 Changes Since v3.0 Revision 4
	11.4 Changes Since v3.0 Revision 5
	11.5 Changes Since v3.0 Revision 6
	11.6 Changes Since v3.0 Revision 7
	11.7 Changes Since v3.0 Revision 8
	11.8 Changes Since v3.0 Revision 9
	11.9 Changes Since v3.0 Revision 10
	11.10 Changes Since v3.0 Revision 11
	11.10 Changes Since v3.0 Revision 12
	11.11 Changes Since v3.0 Revision 13
	11.12 Changes Since v3.1 Revision 1
	11.13 Changes Since v3.1 Revision 2
	11.14 Changes Since v3.1 Revision 3
	11.15 Changes Since v3.1 Revision 4
	11.16 Changes Since v3.1 Revision 5
	11.17 Changes Since v3.1 Revision 6
	11.18 Changes Since v3.1 Revision 7
	11.19 Changes Since v3.1 Revision 8
	11.20 Changes Since v3.1 Revision 9
	11.21 Changes Since v3.1 Revision 10
	11.22 Changes Since v3.1 Revision 11
	11.23 Changes Since v3.1 Revision 12
	11.24 Changes Since v3.1 Revision 14
	11.25 Changes Since v3.1 Revision 15
	11.26 Changes Since v3.1 Revision 16
	11.27 Changes Since v3.1 Revision 17

